Skip to main content

Advertisement

Log in

QSAR and Docking Studies on Some Potential Anti-Cancer Agents to Predict their Effect on M14 Melanoma Cell Line

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

The global incidence of melanoma cancer is increasing rapidly and its metastatic form causes high mortality rates. The research report illustrates the development of a quantitative structure–activity relationship (QSAR) to predict the activities (pGI50) of some anti-cancer agents on melanoma cancer cell line. Subsequently, most potent compounds that showed better pGI50 activities were selected and screened via Lipinski’s rule of five for drug likeness, ADMET risk parameters and lastly docking simulation studies was performed to elucidate their binding mode. Kennard-Stone algorithm was adopted for the data division, the genetic function algorithm was employed for variable selection and multiple linear regressions method was utilized for model development. The derived QSAR model showed, respectively acceptable [(\(R^{2}\) (0.805), \(R_{adjusted}^{2}\) (0.773), Q2cv (0.754) and \(R_{pred}^{2}\) (0.703)]. The obtained cR2P for Y-randomization is 0.649, and applicability-domain (A-D) was assessed via leveraged method. Among the screened compounds via Lipinski’s rule of five for oral bioavailability, ADMET risk filter for drug-like features and Docking simulation studies, compound 18 and 25 were identified as the best ligands having the better interactions energies (− 150.679 kcal mol−1 and − 176.246 kcal mol−1) and showed better interactions with the receptor than vemurafenib (− 147.245 kcal mol−1). Thus, the results of this research would be helpful in identification of lead molecule and optimization of novel drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DFT:

Density Functional Theory

MVD:

Molegro Virtual Docker

QSAR:

Quantitative structure–activity relationship

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

References

  1. Haass NK, Smalley KS, Li L, Herlyn M (2005) Adhesion, migration and communication in melanocytes and melanoma. Pigment Cell Res 18(3):150–159

    Article  CAS  Google Scholar 

  2. Miller AJ, Mihm MC Jr (2006) Melanoma. N Engl J Med 355(1):51–65

    Article  CAS  Google Scholar 

  3. Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, Zhang Y, Ranganathan R, Chapman PB, Krown SE (2007) Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 15(11):2044–2050

    Article  CAS  Google Scholar 

  4. Rigon RB, Oyafuso MH, Fujimura AT, Gonçalez ML, Prado AH, Gremião MPD, Chorilli M (2015) Nanotechnology-based drug delivery systems for melanoma antitumoral therapy: a review. BioMed Res Int 2015:1–22

  5. Ferreira LM, Cervi VF, Sari MHM, Barbieri AV, Ramos AP, Copetti PM, de Brum GF, Nascimento K, Nadal JM, Farago PV (2018) Diphenyl diselenide loaded poly (ε-caprolactone) nanocapsules with selective antimelanoma activity: development and cytotoxic evaluation. Mater Sci Eng C Mater Biol Appl 91:1

    Article  CAS  Google Scholar 

  6. Kavanagh D, Hill A, Djikstra B, Kennelly R, McDermott E, O’Higgins N (2005) Adjuvant therapies in the treatment of stage II and III malignant melanoma. Surgeon 3(4):245–256

    Article  CAS  Google Scholar 

  7. Grossman D, Altieri DC (2001) Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metastasis Rev 20(1–2):3–11

    Article  CAS  Google Scholar 

  8. Dubois RW, Swetter SM, Atkins M, McMasters K, Halbert R, Miller SJ, Shiell R, Kirkwood J (2001) Developing indications for the use of sentinel lymph node biopsy and adjuvant high-dose interferon alfa-2b in melanoma. Arch Dermatol 137(9):1217–1224

    Article  CAS  Google Scholar 

  9. Kumar RS, Messina JL, Sondak EK, Reed DR (2015) Treating melanoma in adolescents and young adults: challenges and solutions. Clin Oncol Adolesc Young Adults 5:75–86

    Google Scholar 

  10. Wu C-P, Ambudkar SV (2014) The pharmacological impact of ATP-binding cassette drug transporters on vemurafenib-based therapy. Acta Pharm Sin B 4(2):105–111

    Article  Google Scholar 

  11. Bass AS, Hombo T, Kasai C, Kinter LB, Valentin J-P (2015) A historical view and vision into the future of the field of safety pharmacology. Principles of Safety Pharmacology. Springer, New York, pp 3–45

    Chapter  Google Scholar 

  12. Rodriguez B, Carusi A, Abi-Gerges N, Ariga R, Britton O, Bub G, Bueno-Orovio A, Burton RA, Carapella V, Cardone-Noott L (2015) Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop. Ep Europace 18(9):1287–1298

    Article  Google Scholar 

  13. Danishuddin M, Khan AU (2015) Structure based virtual screening to discover putative drug candidates: necessary considerations and successful case studies. Methods 71:135–145

    Article  CAS  Google Scholar 

  14. Danishuddin M, Khan AU (2015) Virtual screening strategies: a state of art to combat with multiple drug resistance strains. MOJ Proteom Bioinform 2(2):00042

    Google Scholar 

  15. Shahlaei M (2013) Descriptor selection methods in quantitative structure–activity relationship studies: a review study. Chem Rev 113(10):8093–8103

    Article  CAS  Google Scholar 

  16. Martin YC (1998) 3D QSAR: current state, scope, and limitations. 3D QSAR in drug design. Springer, Berlin, pp 3–23

    Google Scholar 

  17. Ashton PR, Fyfe MC, Hickingbottom SK, Stoddart JF, White AJ, Williams DJ (1998) Hammett correlations ‘beyond the molecule’ 1. J Chem Soc Perkin Trans 2(10):2117–2128

    Article  Google Scholar 

  18. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  Google Scholar 

  19. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279

    Article  CAS  Google Scholar 

  20. Amin SA, Gayen S (2016) Modelling the cytotoxic activity of pyrazolo-triazole hybrids using descriptors calculated from the open source tool “PaDEL-descriptor”. J Taibah Univ Sci 10(6):896–905

    Article  Google Scholar 

  21. Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32(7):1466–1474

    Article  CAS  Google Scholar 

  22. Rajer-Kanduč K, Zupan J, Majcen N (2003) Separation of data on the training and test set for modelling: a case study for modelling of five colour properties of a white pigment. Chemom Intell Lab Syst 65(2):221–229

    Article  Google Scholar 

  23. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148

    Article  Google Scholar 

  24. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol Inform 22(1):69–77

    CAS  Google Scholar 

  25. Golbraikh A, Tropsha A (2000) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 5(4):231–243

    Article  CAS  Google Scholar 

  26. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64:4–17

    Article  Google Scholar 

  27. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62(23):6997–7000

    CAS  PubMed  Google Scholar 

  28. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467(7315):596

    Article  CAS  Google Scholar 

  29. Choi W-K, El-Gamal MI, Choi HS, Baek D, Oh C-H (2011) New diarylureas and diarylamides containing 1, 3, 4-triarylpyrazole scaffold: synthesis, antiproliferative evaluation against melanoma cell lines, ERK kinase inhibition, and molecular docking studies. Eur J Med Chem 46(12):5754–5762

    Article  CAS  Google Scholar 

  30. Wu W, Zhang C, Lin W, Chen Q, Guo X, Qian Y, Zhang L (2015) Quantitative structure-property relationship (QSPR) modeling of drug-loaded polymeric micelles via genetic function approximation. PLoS One 10(3):e0119575

    Article  Google Scholar 

  31. Umar BA, Uzairu A, Shallangwa GA, Sani U (2019) QSAR modeling for the prediction of pGI50 activity of compounds on LOX IMVI cell line and ligand-based design of potent compounds using in silico virtual screening. Netw Model Anal Health Inform Bioinform 8(1):22

    Article  Google Scholar 

  32. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quant Struct Prop Relatsh (IJQSPR) 1(1):45–63

    Google Scholar 

  33. Roy K, Kar S, Das RN (2015) A primer on QSAR/QSPR modeling: fundamental concepts. Springer, New York

    Book  Google Scholar 

  34. Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J Mol Graph Model 25(6):755–766

    Article  CAS  Google Scholar 

  35. Jalali-Heravi M, Konuze E (2002) Use of quantitative structure property relationships in predicting the Kraft point of anionic surfactants. Electron J Mol Des 1:410–417

    Google Scholar 

  36. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  Google Scholar 

  37. Montanari F, Ecker GF (2015) Prediction of drug–ABC-transporter interaction—recent advances and future challenges. Adv Drug Deliv Rev 86:17–26

    Article  CAS  Google Scholar 

  38. Szakacs G, Varadi A, Özvegy-Laczka C, Sarkadi B (2008) The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug Discov Today 13(9–10):379–393

    Article  CAS  Google Scholar 

  39. Guimarães CR, Rai BK, Munchhof MJ, Liu S, Wang J, Bhattacharya SK, Buckbinder L (2011) Understanding the impact of the P-loop conformation on kinase selectivity. J Chem Inf Model 51(6):1199–1204

    Article  Google Scholar 

  40. Adedirin O, Uzairu A, Shallangwa GA, Abechi SE (2018) Optimization of the anticonvulsant activity of 2-acetamido-N-benzyl-2-(5-methylfuran-2-yl) acetamide using QSAR modeling and molecular docking techniques. Beni-Suef Univ J Basic Appl Sci 7(4):430–440

    Article  Google Scholar 

  41. Umar BA, Uzairu A, Shallangwa GA, Uba S (2019) Rational drug design of potent V600E-BRAF kinase inhibitors through molecular docking simulation. J Eng Exact Sci 5(5):0469–0481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullahi Bello Umar.

Ethics declarations

Conflict of interest

Authors report no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umar, A.B., Uzairu, A., Uba, S. et al. QSAR and Docking Studies on Some Potential Anti-Cancer Agents to Predict their Effect on M14 Melanoma Cell Line. Chemistry Africa 3, 1009–1022 (2020). https://doi.org/10.1007/s42250-020-00185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00185-w

Keywords

Navigation