Skip to main content
Log in

Palladium Nanoparticle-Bentonite Hybrid Using Leaves of Syzygium aqueum Plant from India: Design and Assessment in the Catalysis of –C–C– Coupling Reaction

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

An environment-friendly synthesis process has been developed with the aid of Syzygium aqueum (water apple) leaves extract. Pulverized leaves of Syzygium aqueum (water apple) are mixed with a universal solvent such as water for the preparation of Pd nanoparticle supported on activated Bentonite. The extract from the plant leaves acts both as a reducing agent and also as a capping agent for converting the PdCl2 to PdNPs. The synthesized PdNPs are supported on modified clay and they are characterized by using FTIR, BET, HR-TEM, ICP-MS, TGA, XRD, and FE-SEM/EDX. It is found that the supported PdNPs give high rate of conversions of Suzuki–Miyaura coupling products and give greater than 90% products in universal solvent i.e. water at fairly low temperature. It shows the potential for the environment-friendly synthesis of prime organic molecules like excellent biaryl derivatives with TONs and TOFs with economical and efficient catalyst loading. We recorded high activity, chemoselectivity and excellent TONs (15,061–20,537) and TOFs (100,407–136,919) by using a small catalyst loading in short reaction time only 15 min. The catalyst shows a long lifetime (ten times). Experiments are performed, recycling it, which demonstrate the sustainability and efficiency of the catalytic process. The prepared catalyst gives a higher percentage of coupling product in the lower time. The supported PdNPs help to form good selectivity and efficacy. The catalyst is found highly stable and can be recycled ten times with no appreciable loss in the efficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Santoshi kumari A, Venkatesham M, Ayodhya D, Veerabhadram G (2015) Green synthesis, characterization and catalytic activity of palladium nanoparticles by xanthan gum. Appl Nanosci 5:315–320. https://doi.org/10.1007/s13204-014-0320-7

    Article  CAS  Google Scholar 

  2. Omar S, Abu-Reziq R (2014) Palladium nanoparticles supported on magnetic organic-silica hybrid nanoparticles. J Phys Chem C 118:30045–30056. https://doi.org/10.1021/jp510472t

    Article  CAS  Google Scholar 

  3. Li T, Liu Y, Liu FS (2017) Efficient preparation and application of palladium loaded montmorillonite as a reusable and effective heterogeneous catalyst for Suzuki cross-coupling reaction. Appl Clay Sci 136:18–25. https://doi.org/10.1016/j.clay.2016.11.004

    Article  CAS  Google Scholar 

  4. Saikia PK, Bhattacharjee RP, Sarmah PP et al (2016) A green synthesis of Pd nanoparticles supported on modified montmorillonite using aqueous: Ocimum sanctum leaf extract: a sustainable catalyst for hydrodechlorination of 4-chlorophenol. RSC Adv 6:110011–110018. https://doi.org/10.1039/c6ra22788k

    Article  CAS  Google Scholar 

  5. Zhao J, Hu W, Li H et al (2015) One-step green synthesis of a ruthenium/graphene composite as a highly efficient catalyst. RSC Adv 5:7679–7686. https://doi.org/10.1039/c4ra11397g

    Article  CAS  Google Scholar 

  6. Tadjarodi A, Dehghani M, Imani M (2018) Green synthesis and characterization of palladium nanoparticles supported on zeolite Y by sonochemical method, powerful and efficient catalyst for Suzuki–Miyaura coupling of aryl halides with phenylboronic acid. Appl Organomet Chem 32:1–10. https://doi.org/10.1002/aoc.4594

    Article  CAS  Google Scholar 

  7. Santra S, Hota PK, Bhattacharyya R et al (2013) Palladium nanoparticles on graphite oxide: a recyclable catalyst for the synthesis of biaryl cores. ACS Catal 3:2776–2789. https://doi.org/10.1021/cs400468h

    Article  CAS  Google Scholar 

  8. Astruc D (2007) Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorg Chem 46:1884–1894. https://doi.org/10.1021/ic062183h

    Article  CAS  PubMed  Google Scholar 

  9. Ncube P, Hlabathe T, Meijboom R (2015) Palladium nanoparticles supported on mesoporous silica as efficient and recyclable heterogenous nanocatalysts for the Suzuki C–C coupling reaction. J Clust Sci 26:1873–1888. https://doi.org/10.1007/s10876-015-0885-7

    Article  CAS  Google Scholar 

  10. Xu X, Li Y, Gong Y et al (2012) Synthesis of palladium nanoparticles supported on mesoporous n-doped carbon and their catalytic ability for biofuel upgrade. J Am Chem Soc 134:16987–16990. https://doi.org/10.1021/ja308139s

    Article  CAS  PubMed  Google Scholar 

  11. Nasrollahzadeh M, Sajadi SM, Honarmand E, Maham M (2015) Preparation of palladium nanoparticles using Euphorbia thymifolia L. leaf extract and evaluation of catalytic activity in the ligand-free Stille and Hiyama cross-coupling reactions in water. New J Chem 39:4745–4752. https://doi.org/10.1039/c5nj00244c

    Article  CAS  Google Scholar 

  12. Koh MJ, Nguyen TT, Zhang H et al (2016) Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis. Nature 531:459–465. https://doi.org/10.1038/nature17396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loganathan RK, Ramachandra SN, Shekharappa SVV (2017) Montmorillonite K-10-supported palladium nanoparticles for copper-free acyl sonogashira reaction. ChemistrySelect 2:8059–8062. https://doi.org/10.1002/slct.201701150

    Article  CAS  Google Scholar 

  14. Rezayat M, Blundell RK, Camp JE et al (2014) Green one-step synthesis of catalytically active palladium nanoparticles supported on cellulose nanocrystals. ACS Sustain Chem Eng 2:1241–1250. https://doi.org/10.1021/sc500079q

    Article  CAS  Google Scholar 

  15. Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: catalytic activity for reduction of organic dyes. J Colloid Interface Sci 490:1–10. https://doi.org/10.1016/j.jcis.2016.11.032

    Article  CAS  PubMed  Google Scholar 

  16. Li F, Zhang Q, Wang Y (2008) Size dependence in solvent-free aerobic oxidation of alcohols catalyzed by zeolite-supported palladium nanoparticles. Appl Catal A Gen 334:217–226. https://doi.org/10.1016/j.apcata.2007.10.008

    Article  CAS  Google Scholar 

  17. Chai Y, Liu S, Zhao ZJ et al (2018) Selectivity modulation of encapsulated palladium nanoparticles by zeolite microenvironment for biomass catalytic upgrading. ACS Catal 8:8578–8589. https://doi.org/10.1021/acscatal.8b02276

    Article  CAS  Google Scholar 

  18. Miyake K, Hirota Y, Ono K et al (2016) Direct and selective conversion of methanol to para-xylene over Zn ion doped ZSM-5/silicalite-1 core-shell zeolite catalyst. J Catal 342:63–66. https://doi.org/10.1016/j.jcat.2016.07.008

    Article  CAS  Google Scholar 

  19. Baran T (2018) Pd(0) nanocatalyst stabilized on a novel agar/pectin composite and its catalytic activity in the synthesis of biphenyl compounds by Suzuki–Miyaura cross coupling reaction and reduction of o-nitroaniline. Carbohydr Polym 195:45–52. https://doi.org/10.1016/j.carbpol.2018.04.064

    Article  CAS  PubMed  Google Scholar 

  20. Baran T, Açiksöz E, Menteş A (2015) Carboxymethyl chitosan Schiff base supported heterogeneous palladium(II) catalysts for Suzuki cross-coupling reaction. J Mol Catal A Chem 407:47–52. https://doi.org/10.1016/j.molcata.2015.06.008

    Article  CAS  Google Scholar 

  21. Baran T, Inanan T, Menteş A (2016) Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst. Carbohydr Polym 145:20–29. https://doi.org/10.1016/j.carbpol.2016.03.019

    Article  CAS  PubMed  Google Scholar 

  22. Baran T, Sargin I, Kaya M, Menteş A (2016) Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2016.06.103

    Article  PubMed  Google Scholar 

  23. Yılmaz Baran N, Baran T, Menteş A (2017) Fabrication and application of cellulose Schiff base supported Pd(II) catalyst for fast and simple synthesis of biaryls via Suzuki coupling reaction. Appl Catal A Gen 531:36–44. https://doi.org/10.1016/j.apcata.2016.12.005

    Article  CAS  Google Scholar 

  24. Yılmaz Baran N, Baran T, Menteş A (2018) Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki–Miyaura coupling reactions. Carbohydr Polym 181:596–604. https://doi.org/10.1016/j.carbpol.2017.11.107

    Article  CAS  PubMed  Google Scholar 

  25. Baran T, Sargin I, Kaya M, Mentes A (2017) Design and application of sporopollenin microcapsule supported palladium catalyst: remarkably high turnover frequency and reusability in catalysis of biaryls. J Colloid Interface Sci 486:194–203. https://doi.org/10.1016/j.jcis.2016.09.071

    Article  CAS  PubMed  Google Scholar 

  26. Baran T, Menteş A (2017) Construction of new biopolymer (chitosan)-based pincer-type Pd(II) complex and its catalytic application in Suzuki cross coupling reactions. J Mol Struct 1134:591–598. https://doi.org/10.1016/j.molstruc.2017.01.005

    Article  CAS  Google Scholar 

  27. Baran T, Yılmaz Baran N, Menteş A (2018) A new air and moisture stable robust bio-polymer based palladium catalyst for highly efficient synthesis of biaryl compounds. Appl Organomet Chem 32:1–11. https://doi.org/10.1002/aoc.4076

    Article  CAS  Google Scholar 

  28. Gholamian F, Hajjami M (2019) Synthesis of Pd immobilized on functionalized hexagonal mesoporous silica (HMS–CPTMS–Cy–Pd) for coupling Suzuki–Miyaura and Stille reactions. Polyhedron 170:649–658. https://doi.org/10.1016/j.poly.2019.06.006

    Article  CAS  Google Scholar 

  29. Baran T (2019) Biosynthesis of highly retrievable magnetic palladium nanoparticles stabilized on bio-composite for production of various biaryl compounds and catalytic reduction of 4-nitrophenol. Catal Lett. https://doi.org/10.1007/s10562-019-02753-3

    Article  Google Scholar 

  30. Veisi H, Faraji AR, Hemmati S, Gil A (2015) Green synthesis of palladium nanoparticles using Pistacia atlantica kurdica gum and their catalytic performance in Mizoroki–Heck and Suzuki–Miyaura coupling reactions in aqueous solutions. Appl Organomet Chem 29:517–523. https://doi.org/10.1002/aoc.3325

    Article  CAS  Google Scholar 

  31. Suchand B, Satyanarayana G (2017) Palladium-catalyzed acylations: one-pot synthesis of indenones. J Org Chem 82:372–381. https://doi.org/10.1021/acs.joc.6b02453

    Article  CAS  PubMed  Google Scholar 

  32. Kora AJ, Rastogi L (2018) Green synthesis of palladium nanoparticles using gum ghatti (Anogeissus latifolia) and its application as an antioxidant and catalyst. Arab J Chem 11:1097–1106. https://doi.org/10.1016/j.arabjc.2015.06.024

    Article  CAS  Google Scholar 

  33. Byrne FP, Jin S, Paggiola G et al (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:1–24. https://doi.org/10.1186/s40508-016-0051-z

    Article  CAS  Google Scholar 

  34. De LD, Alvarez HM, Aguiar LCS (2010) Microwave-assisted Suzuki reaction catalyzed by Pd (0)–PVP nanoparticles. Tetrahedron Lett 51:6814–6817. https://doi.org/10.1016/j.tetlet.2010.09.145

    Article  CAS  Google Scholar 

  35. Glaspell G, Fuoco L, El-Shall MS (2005) Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. J Phys Chem B 109:17350–17355. https://doi.org/10.1021/jp0526849

    Article  CAS  PubMed  Google Scholar 

  36. Gogoi N, Bordoloi P, Borah G, Gogoi PK (2017) Synthesis of palladium nanoparticle by bio-reduction method and its effectiveness as heterogeneous catalyst towards selective oxidation of benzyl alcohols in aqueous media. Catal Lett 147:539–546. https://doi.org/10.1007/s10562-016-1937-9

    Article  CAS  Google Scholar 

  37. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  38. Sheny DS, Philip D, Mathew J (2012) Rapid green synthesis of palladium nanoparticles using the dried leaf of Anacardium occidentale. Spectrochim Acta Part A Mol Biomol Spectrosc 91:35–38. https://doi.org/10.1016/j.saa.2012.01.063

    Article  CAS  Google Scholar 

  39. Liu W, Xu L, Lu G, Zhang H (2017) Selective partial hydrogenation of methyl linoleate using highly active palladium nanoparticles in polyethylene glycol. ACS Sustain Chem Eng 5:1368–1375. https://doi.org/10.1021/acssuschemeng.6b01823

    Article  CAS  Google Scholar 

  40. De Castro KA, Rhee H (2015) Resin-immobilized palladium nanoparticle catalysts for Suzuki–Miyaura cross-coupling reaction in aqueous media. J Incl Phenom Macrocycl Chem 82:13–24. https://doi.org/10.1007/s10847-014-0428-0

    Article  CAS  Google Scholar 

  41. Dewan A, Sarmah M, Thakur AJ et al (2018) Greener biogenic approach for the synthesis of palladium nanoparticles using papaya peel: an eco-friendly catalyst for C–C coupling reaction. ACS Omega 3:5327–5335. https://doi.org/10.1021/acsomega.8b00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baran T, Sargin I, Kaya M, Menteş A (2016) An environmental catalyst derived from biological waste materials for green synthesis of biaryls via Suzuki coupling reactions. J Mol Catal A Chem 420:216–221. https://doi.org/10.1016/j.molcata.2016.04.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Bhange D. S, Assistant Professor in Inorganic Chemistry, Shivaji University, Kolhapur, Maharashtra, India for his kind help also the authors are grateful to the Principal, Ahemednagar College, Ahemednagar for his constant encouragement and for giving permission to use laboratory facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish B. Manjare.

Ethics declarations

Conflict of interest

The authors declare that they have is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjare, S.B., Chaudhari, R.A. Palladium Nanoparticle-Bentonite Hybrid Using Leaves of Syzygium aqueum Plant from India: Design and Assessment in the Catalysis of –C–C– Coupling Reaction. Chemistry Africa 3, 329–341 (2020). https://doi.org/10.1007/s42250-020-00139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00139-2

Keywords

Navigation