Skip to main content
Log in

Spectra, Electronic Structure of 2-Vinyl Naphthalene and Their Oligomeric Scaffold Models: A Quantum Chemical Investigation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This investigation comprises with the spectral, electronic and oligomeric scaffold modelling of 2-vinyl naphthalene (1[2VN]). The normal mode vibrational characteristic nature of the system has been studied using experimental FT-IR and FT-Raman spectra along with simulated vibrational compliments using B3LYP/6-31 + G(d,p). The FT-IR and FT-Raman spectrums have been recorded in the range of 4000–400 cm−1 and 4000–50 cm−1 respectively. The Potential energy distribution (PED) of 1[2VN] deepen the understanding on different modes of vibrations promoted by individual wavenumber. The experimental UV–Visible spectra was recorded within the region of 400–200 nm and correlated with calculated spectra by solvated TD-DFT B3LYP/6-31 + G(d,p) model. The calculated equilibrium structure has been compared with experimentally available structure and the chemical bonding nature was characterized using natural bond orbital (NBO) analysis. Thermodynamic properties such as heat capacities, entropies, enthalpies and their associations with temperature rise have been investigated. The frontier molecular orbital analysis (FMO), molecular electrostatic potential (MEP) and hyperpolarizability were investigated. In addition, the oligomer forms of 1[2VN] were constructed and around 19 scaffold candidates designed by substituting several donor acceptor moieties at different position to get a candidate with minimized the band gap. The geometry, FMO, MEP, NBO and selected NLO properties has been explored to identify the high efficient donor-pi-acceptor system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rumble J (2017–2018) CRC handbook of chemistry and physics, 98th edn. CRC Press, Boca Raton

  2. Li J, Li Y-H, Zhao Y, Liu X-Y, Fung M-K, Fan J (2018) Org Electron 54:140–147

    Article  CAS  Google Scholar 

  3. Triboni ER, Fernandes MR, Garcia JR, Carreira MC, Berlinck RGS, Filho PB, Roman LS, Hümmelgen IA, Reyes R, Cremona M (2015) J Taibah Univ Sci 9:579–585

    Article  Google Scholar 

  4. Zhang S, Xue L-S, Jing Y-M, Liu X, Lu G-Z, Liang X, Li H-Y, Zheng Y-X, Zuo J-L (2015) Dyes Pigments 118:1–8

    Article  CAS  Google Scholar 

  5. Chen W, Liu T, Sun X, Guo F, Wang Y, Shi C, Ghadari R, Kong F (2019) J Power Sources 425:87–93

    Article  CAS  Google Scholar 

  6. Rekha TN, Umadevi M, Rajkumar BJM (2015) J Mol Struct 1079:155–162

    Article  CAS  Google Scholar 

  7. Arivazhagan M, Subhasini VP, Kavitha R, Senthilkumar R (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 131:636–646

    Article  CAS  Google Scholar 

  8. Zhang Q (2015) Synthesis. Tetrahedron Lett 56:4011–4015

    Article  CAS  Google Scholar 

  9. Gajalakshmi D, Solomon RV (2015) RSC Adv 5:50353–50364

    Article  CAS  Google Scholar 

  10. Gajalakshmi D, Boobalan MS (2019) Comput Mater Sci 162:60–68

    Article  CAS  Google Scholar 

  11. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian Inc, Wallingford

  12. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission KS

    Google Scholar 

  13. Jamroz MH (2004) Vibrational energy distribution analysis. VEDA 4 Computer program, Poland

  14. Michalska D, Wysokiński R (2005) Chem Phys Lett 403:211–217

    Article  CAS  Google Scholar 

  15. Shen S, Guirgis GA, Durig JR (2001) Struct Chem 12:33–43

    Article  CAS  Google Scholar 

  16. Marciniak B, Rozycka-Sokolowska E, Pavlyuk V (2003) Acta Crystallogr Sect E 5:52–53

    Article  Google Scholar 

  17. Sert Y, Ucun F, Böyükata M (2012) Indian J Phys 86:859–869

    Article  CAS  Google Scholar 

  18. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  19. Bellamy LJ (1975) The Infrared spectra of complex molecules. Chapman and Hall, London

    Book  Google Scholar 

  20. Kumar S, Rai AK, Rai SB et al (2010) Indian J Phys 84:563–573

    Article  CAS  Google Scholar 

  21. Gunaskaran S, Anitha B, Seshadri S (2010) Indian J Pure Appl Phys 48:183

    Google Scholar 

  22. Jone Pradeepa S, Sundaraganesan N (2014) Spectrochim Acta Part A 125:211–221

    Article  CAS  Google Scholar 

  23. Szumna A, Jurczak J, Urbanczyk-Lipkowska Z (2000) J Mol Struct 526:165–175

    Article  CAS  Google Scholar 

  24. Varsanyi V (1969) Vibrations spectra of benzene derivatives. Academic, New York

    Google Scholar 

  25. McQuarrie S (1999) Molecular thermodynamics. University Science Books, Sausalito

    Google Scholar 

  26. Gutowski M, Chalasinski G (1994) J Chem Phys 98:4728

    Article  Google Scholar 

  27. Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418–2427

    Article  CAS  Google Scholar 

  28. Weinhold F, Landis CR, Glendening ED (2016) Int Rev Phys Chem 35:399–440

    Article  CAS  Google Scholar 

  29. Boobalan MS, Ramalingam S (2014) J Mol Struct 1072:153–172

    Article  CAS  Google Scholar 

  30. Kleinmann DA (1962) Phys Rev 126:1977–1979

    Article  Google Scholar 

  31. Messier J, Kajzar F, Prasad P, Ulrich D (1989) Nonlinear Optical Effects in Organic Polymers. NATO ASI Ser E Appl Sci 162:116–118

    Google Scholar 

  32. Solomon RV, Bella AP (2012) Phys Chem Chem Phys 14:14229–14237

    Article  Google Scholar 

  33. Vijay Solomon R (2012) J Phys Chem A 116:4667–4677

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boobalan Maria Susai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susairaj, J., Kaya, S., Ramamoorthy, R. et al. Spectra, Electronic Structure of 2-Vinyl Naphthalene and Their Oligomeric Scaffold Models: A Quantum Chemical Investigation. Chemistry Africa 3, 371–390 (2020). https://doi.org/10.1007/s42250-020-00137-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00137-4

Keywords

Navigation