Skip to main content
Log in

Sustainable Chemicals: A Brief Survey of the Furans

  • Perspective
  • Published:
Chemistry Africa Aims and scope Submit manuscript

A Correction to this article was published on 19 March 2020

This article has been updated

Abstract

Whether it is in the textiles, paints and coatings, energy sector, polymers, plastics, woods, sugar chemistry, pharmacy, aerospace and the automotive industries, the multiplicity of applications of furans and their derivatives, have made steady, impressive, and progressive impacts over the last 9 decades. After World War II, due to the shift in focus towards the petroleum-based chemical feedstocks, research, and development studies of these impressive class of lignocellulosic-derived chemicals, slowed down markedly. The trend, however, has reversed remarkably in recent time, due to the pursuit for “green” and sustainable chemical feedstocks, coupled with the increasing concerns over climate change, volatile oil prices and the attendant undesirable environmental issues, associated with fossil hydrocarbons. Chemicals obtained from “green” inedible lignocellulosic biomass, such as: the furans and their derivatives, ranks amongst the most promising, sustainable, and industrially applicable alternatives to various petroleum-derived chemicals; further offering an enormous assortment of unique compounds/materials, and properties analogous to and even exceeding those derived from fossil hydrocarbons. This article reviews selected progresses, so far made, in the field of furans and its derivatives and their application portfolios; while recognising the immense contributions of Peters and Dunlop, who in no small measures, advanced the furan chemical industry during their research efforts at the Oat Hull Research Centre at the Quaker Oats Company, Cedar Rapids, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Scheme 3
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 19 March 2020

    In the original version of this article the first name of the third author was incorrect.

References

  1. Yabushita M (2016) A study on catalytic conversion of non-food biomass into chemicals: fusion of chemical sciences and engineering. Springer, Singapore

    Book  Google Scholar 

  2. Iroegbu AO, Hlangothi SP (2019) Furfuryl alcohol a versatile, eco-sustainable compound in perspective. Chem Afr 2:223–239. https://doi.org/10.1007/s42250-018-00036-9

    Article  CAS  Google Scholar 

  3. Hall KO, Chuck-A-Sang M (2013) Economic transformation and job creation. Trafford Publishing, Bloomington

    Google Scholar 

  4. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985. https://doi.org/10.1021/ja808537j

    Article  CAS  PubMed  Google Scholar 

  5. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c5py00263j

    Article  CAS  Google Scholar 

  6. Using Biomass to Recycle CO2. https://www.azocleantech.com/article.aspx?ArticleID=726. Accessed 5 Dec 2019

  7. World Economic Forum (2019) Top 10 emerging technologies 2019. In: Insight report. http://www3.weforum.org/docs/WEF_Top_10_Emerging_Technologies_2019_Report.pdf. Accessed 3 Dec 2019

  8. Biomass Research & Development Board (2018) The Bioeconomy initiative: implementation framework. DOE/EE-1865, United States of America

  9. Ronzon T, M’Barek R (2018) Socioeconomic indicators to monitor the EU’s bioeconomy in transition. In: Sustainability (Switzerland). https://ec.europa.eu/commission/news/new-bioeconomy-strategy-sustainable-europe-2018-oct-11-0_en. Accessed 16 Aug 2019

  10. Sala S, Reale F, Cristobal-Garcia J, Marelli L, Pant R (2016) Life cycle assessment for the impact assessment of policies Environmental impact of different areas of EU consumption: food, mobility, housing, household goods View project Environmental Footprint Pilot-survey for weighting environmental impact categories. European Commission

  11. Castellani V, Sala S, Benini L (2017) Hotspots analysis and critical interpretation of food life cycle assessment studies for selecting eco-innovation options and for policy support. J Clean Prod 140:556–568. https://doi.org/10.1016/j.jclepro.2016.05.078

    Article  Google Scholar 

  12. Clifton-Brown J, Harfouche A, Casler MD, Dylan Jones H, Macalpine WJ, Murphy-Bokern D, Smart LB, Adler A, Ashman C, Awty-Carroll D, Bastien C, Bopper S, Botnari V, Brancourt-Hulmel M, Chen Z, Clark LV, Cosentino S, Dalton S, Davey C, Dolstra O, Donnison I, Flavell R, Greef J, Hanley S, Hastings A, Hertzberg M, Hsu TW, Huang LS, Iurato A, Jensen E, Jin X, Jørgensen U, Kiesel A, Kim DS, Liu J, McCalmont JP, McMahon BG, Mos M, Robson P, Sacks EJ, Sandu A, Scalici G, Schwarz K, Scordia D, Shafiei R, Shield I, Slavov G, Stanton BJ, Swaminathan K, Taylor G, Torres AF, Trindade LM, Tschaplinski T, Tuskan GA, Yamada T, Yeon YuC, Zalesny RS, Zong J, Lewandowski I (2019) Breeding progress and preparedness for mass-scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar. GCB Bioenergy 11:118–151. https://doi.org/10.1111/gcbb.12566

    Article  PubMed  Google Scholar 

  13. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz 10:235–251. https://doi.org/10.1007/s12649-017-0059-y

    Article  CAS  Google Scholar 

  14. Brondi MG, Vasconcellos VM, Giordano RC, Farinas CS (2019) Alternative low-cost additives to improve the saccharification of lignocellulosic biomass. Appl Biochem Biotechnol 187:461–473. https://doi.org/10.1007/s12010-018-2834-z

    Article  CAS  PubMed  Google Scholar 

  15. Peng F, Ren JL, Xu F, Sun RC (2011) Chemicals from hemicelluloses: a review. ACS Symp Ser 1067:219–259. https://doi.org/10.1021/bk-2011-1067.ch009

    Article  CAS  Google Scholar 

  16. Vispute TP, Huber GW (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels

  17. George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734. https://doi.org/10.1039/c4gc01208a

    Article  CAS  Google Scholar 

  18. Pandey A, Negi S, Binod P, Larroche C (2014) Pretreatment of biomass: processes and technologies. Elsevier, pp 1–272. ISBN: 9780128003961, https://doi.org/10.1016/C2013-0-13432-0

  19. Tojo S, Hirasawa T (2013) Research approaches to sustainable biomass systems. Academic Press. ISBN: 9780124046092

  20. Newth FH (1951) The formation of furan compounds from hexoses. Adv Carbohydr Chem 6:83–106. https://doi.org/10.1016/S0096-5332(08)60064-8

    Article  CAS  PubMed  Google Scholar 

  21. Blue D, Fortela DL, Holmes W, LaCour D, LeBoeuf S, Stelly C, Subramaniam R, Hernandez R, Zappi ME, Revellame ED (2019) Valorization of industrial vegetable waste using dilute HCl pretreatment. Processes. https://doi.org/10.3390/pr7110853

    Article  Google Scholar 

  22. Dunlop AP, Peters FN (1953) The furans. Reinhold Publishing Corporation, New York

    Google Scholar 

  23. Ke Z, Chit Tsui G, Peng XS, Yeung YY (2018) Five-membered ring systems: furans and benzofurans. Prog Heterocycl Chem 30:169–195. https://doi.org/10.1016/B978-0-08-102788-2.00007-6

    Article  CAS  Google Scholar 

  24. McKillip WJ (1989) Chemistry of furan polymers. In: ACS symposium series. ACS symposium series, pp 408–423

  25. Lamb BS, Kovacic P (1980) Polymerization of aromatic nuclei—24. Investigation of oligomer and polymer from furan and trichloroacetic acid. J Polym Sci Part A-1 Polym Chem 18:2423–2436. https://doi.org/10.1002/pol.1980.170180802

    Article  CAS  Google Scholar 

  26. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter GJM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983. https://doi.org/10.1039/c5py00686d

    Article  CAS  Google Scholar 

  27. Gilman H, Burtner RR, Smith EW (1933) Orientation in the furan nucleus. III. 5-Methyl-3-furoic acid. J Am Chem Soc 55:403–406. https://doi.org/10.1021/ja01328a059

    Article  CAS  Google Scholar 

  28. Ma J, Shi S, Jia X, Xia F, Ma H, Gao J, Xu J (2019) Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. J Energy Chem 36:74–86. https://doi.org/10.1016/j.jechem.2019.04.026

    Article  Google Scholar 

  29. Rorrer JE, Bell AT, Toste FD (2019) Synthesis of biomass-derived ethers for use as fuels and lubricants. Chemsuschem 12:2835–2858. https://doi.org/10.1002/cssc.201900535

    Article  CAS  PubMed  Google Scholar 

  30. de Gonzalo G, Alcántara AR, Domínguez de María P (2019) Cyclopentyl Methyl Ether (CPME): a versatile eco-friendly solvent for applications in biotechnology and biorefineries. Chemsuschem 12:2083–2097. https://doi.org/10.1002/cssc.201900079

    Article  CAS  PubMed  Google Scholar 

  31. Galkin KI, Ananikov VP (2019) When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken? Chemsuschem 12:2976–2982. https://doi.org/10.1002/cssc.201900592

    Article  CAS  PubMed  Google Scholar 

  32. John G, Nagarajan S, Vemula PK, Silverman JR, Pillai CKS (2019) Natural monomers: a mine for functional and sustainable materials—occurrence, chemical modification and polymerization. Prog Polym Sci 92:158–209. https://doi.org/10.1016/j.progpolymsci.2019.02.008

    Article  CAS  Google Scholar 

  33. Decostanzi M, Auvergne R, Boutevin B, Caillol S (2019) Biobased phenol and furan derivative coupling for the synthesis of functional monomers. Green Chem 21:724–747. https://doi.org/10.1039/c8gc03541e

    Article  CAS  Google Scholar 

  34. Chernyshev VM, Kravchenko OA, Ananikov VP (2017) Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russ Chem Rev 86:357–387. https://doi.org/10.1070/rcr4700

    Article  CAS  Google Scholar 

  35. Uslamin EA, Luna-Murillo B, Kosinov N, Bruijnincx PCA, Pidko EA, Weckhuysen BM, Hensen EJM (2019) Gallium-promoted HZSM-5 zeolites as efficient catalysts for the aromatization of biomass-derived furans. Chem Eng Sci. https://doi.org/10.1016/j.ces.2018.09.023

    Article  Google Scholar 

  36. Kucherov FA, Romashov LV, Galkin KI, Ananikov VP (2018) Chemical transformations of biomass-derived C6-furanic platform chemicals for sustainable energy research, materials science, and synthetic building blocks. ACS Sustain Chem Eng 6:8064–8092. https://doi.org/10.1021/acssuschemeng.8b00971

    Article  CAS  Google Scholar 

  37. Hu L, Lin L, Wu Z, Zhou S, Liu S (2017) Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew Sustain Energy Rev 74:230–257. https://doi.org/10.1016/j.rser.2017.02.042

    Article  CAS  Google Scholar 

  38. Kumar S, Samal SK, Mohanty S, Nayak SK (2018) Recent development of biobased epoxy resins: a review. Polym Plast Technol Eng 57:133–155. https://doi.org/10.1080/03602559.2016.1253742

    Article  CAS  Google Scholar 

  39. Eldeeb MA, Akih-Kumgeh B (2018) Recent trends in the production, combustion and modeling of furan-based fuels. Energies. https://doi.org/10.3390/en11030512

    Article  Google Scholar 

  40. Scheele CW (2016) Sämtliche Physische und Chemische Werke. Beilstein 1:265

    Google Scholar 

  41. Döbereiner JW (1832) Ueber die medicinische und chemische Anwendung und die vortheilhafte Darstellung der Ameisensäure. Annalen der Pharmacie 3:141–146. https://doi.org/10.1002/jlac.18320030206

    Article  Google Scholar 

  42. Schwanert H (1860) 42. Vorläufige Notiz über einige Derivate der Schleimsäure und Pyroschleimsäure. Justus Liebigs Annalen der Chemie 114:63–65. https://doi.org/10.1002/jlac.18601140108

    Article  Google Scholar 

  43. Ulrich C (1860) V.—Conversion of lactic acid into propionic acid. Q J Chem Soc Lond 12:23–26. https://doi.org/10.1039/QJ8601200023

    Article  Google Scholar 

  44. Limpricht H (1870) Ueber das Tetraphenol, C4H4O. Ber Dtsch Chem Ges 3:90–91. https://doi.org/10.1002/cber.18700030129

    Article  Google Scholar 

  45. Limpricht H, Schwanert H (1870) Ueber das Toluylenoxyd oder Desoxybenzoïn, C14H12O. Justus Liebigs Annalen der Chemie 155:59–77. https://doi.org/10.1002/jlac.18701550106

    Article  Google Scholar 

  46. Limpricht H (1869) Ueber die Pyroschleimsäuregruppe. Ber Dtsch Chem Ges 2:211–212. https://doi.org/10.1002/cber.18690020199

    Article  Google Scholar 

  47. Zanetti JE, Beckmann CO (1926) Esters of furoic acid. J Am Chem Soc 48:1067–1069. https://doi.org/10.1021/ja01415a028

    Article  CAS  Google Scholar 

  48. Rand MJ, Yount WF, Newkirk RF, Noland EE (1941) Industrial research laboratories of the United States including Consulting Research Laboratories, 9th edn. NAS-NAE, Washington D.C

  49. Peters FN (1948) Introduction—furan chemistry. Ind Eng Chem 40:200. https://doi.org/10.1021/ie50458a004

    Article  CAS  Google Scholar 

  50. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669. https://doi.org/10.1021/acs.chemrev.5b00264

    Article  CAS  PubMed  Google Scholar 

  51. Tsuji H, Nakamura E (2017) Design and functions of semiconducting fused polycyclic furans for optoelectronic applications. Acc Chem Res 50:396–406. https://doi.org/10.1021/acs.accounts.6b00595

    Article  CAS  PubMed  Google Scholar 

  52. Wang S, Vorotnikov V, Vlachos DG (2014) A DFT study of furan hydrogenation and ring opening on Pd(111). Green Chem 16:736–747. https://doi.org/10.1039/c3gc41183d

    Article  CAS  Google Scholar 

  53. Fan C, Pang C, Liu X, Ma J, Gao H (2016) Self-curing furan-based elastic thermosets derived from citric acid. Green Chem 18:6320–6328. https://doi.org/10.1039/c6gc02166b

    Article  CAS  Google Scholar 

  54. Eicher T, Hauptmann S, Speicher A (2013) The chemistry of heterocycles: structure, reactions, syntheses, and applications, third, completely revised and enlarged edition. Wiley, pp 1–646. ISBN: 9783527327478

  55. Gandini A, Coelho D, Gomes M, Reis B, Silvestre A (2009) Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J Mater Chem 19:8656–8664. https://doi.org/10.1039/b909377j

    Article  CAS  Google Scholar 

  56. Zeitsch KJ (2000) The chemistry and technology of furfural and its many by-products, 1st edn. Elsevier Science B.V., Amsterdam

    Google Scholar 

  57. Arnold DR, Buzzard JL (2003) A novel process for furfural production. In: Proceedings of the South African chemical engineering congress. pp 3–5

  58. DalinYebo (2019) Furfural and its many by-products. https://dalinyebo.com/furfural-and-its-many-by-products/. Accessed 11 Oct 2019

  59. Peters FN (1936) The furans fifteen years of progress. Ind Eng Chem 28:755–759. https://doi.org/10.1021/ie50319a002

    Article  CAS  Google Scholar 

  60. Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sustain Energy Rev 38:663–676. https://doi.org/10.1016/j.rser.2014.07.003

    Article  CAS  Google Scholar 

  61. Killeffer DH (1926) Furfural steps into industry: the commercial manufacture of this new industrial raw material. Ind Eng Chem 18:1217–1219. https://doi.org/10.1021/ie50204a004

    Article  CAS  Google Scholar 

  62. Nathwani S (2016) Furfural Market by Raw Material (Corn Cob, Rice Husk, Sugarcane Bagasse, and Others), Application (Furfuryl Alcohol and Solvent), and End User Industry (Petroleum Refineries, Agricultural Formulations, Paints & Coatings, Pharmaceuticals, and Others). https://www.researchandmarkets.com/reports/4060477/furfural-market-by-raw-material-corn-cob-rice. Accessed 14 Oct 2019

  63. Trickey JP, Leuck GJ (1926) Furfural derivatives as rubber accelerators. Ind Eng Chem 18:812–813. https://doi.org/10.1021/ie50200a012

    Article  CAS  Google Scholar 

  64. McGuigan H (1923) The action of furfural. J Pharmacol Exp Ther 21:65–75

    CAS  Google Scholar 

  65. Getman FH (1924) The ultra-violet absorption spectrum of furfural. J Phys Chem 28:397–401. https://doi.org/10.1021/j150238a009

    Article  CAS  Google Scholar 

  66. Getman FH (1924) A study of the electrolytic dissociation of some salts in furfural. J Phys Chem 28:212–220. https://doi.org/10.1021/j150237a002

    Article  CAS  Google Scholar 

  67. Dixit RB, Uplana RA, Patel VA, Dixit BC, Patel TS (2010) Development and evaluation of cefadroxil drug loaded biopolymeric films based on chitosan-furfural schiff base. Sci Pharm 78:909–925. https://doi.org/10.3797/scipharm.0912-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. IFC (2016) Applications of furfural. http://www.furan.com/furfural_applications_of_furfural.html. Accessed 14 Oct 2019

  69. Iroegbu AO, Hlangothi SP (2018) Effects of the type of catalyst on the polymerisation mechanism of furfuryl alcohol and its resultant properties. Chem Africa 1:187–197. https://doi.org/10.1007/s42250-018-0017-5

    Article  CAS  Google Scholar 

  70. Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640. https://doi.org/10.1021/acscatal.6b01838

    Article  CAS  Google Scholar 

  71. Cui X, Zhao X, Liu D (2018) A novel route for the flexible preparation of hydrocarbon jet fuels from biomass-based platform chemicals: a case of using furfural and 2,3-butanediol as feedstocks. Green Chem 20:2018–2026. https://doi.org/10.1039/c8gc00292d

    Article  CAS  Google Scholar 

  72. Peng X, Chen L, Yan Z (2018) Sulfonic polymer catalysts for converting of furfural to high-value chemicals. Energy Sour Part A Recovery Util Environ Eff 40:2342–2353. https://doi.org/10.1080/15567036.2018.1488018

    Article  CAS  Google Scholar 

  73. Sun D, Sato S, Ueda W, Primo A, Garcia H, Corma A (2016) Production of C4 and C5 alcohols from biomass-derived materials. Green Chem 18:2579–2597. https://doi.org/10.1039/c6gc00377j

    Article  CAS  Google Scholar 

  74. Fini EH, Buabeng FS, Abu-Lebdeh T, Awadallah F (2016) Effect of introduction of furfural on asphalt binder ageing characteristics. Road Mater Pavement Des 17:638–657. https://doi.org/10.1080/14680629.2015.1108219

    Article  CAS  Google Scholar 

  75. Memon GM, Eba F, Chollar BH (1994) Nature of the chemical reaction for furfural modified asphalt. In: 208. American Chemical Society (ACS) national meeting, Washington, DC (United States), 21–26 Aug. p 1304

  76. Zhou Y, Chen J, Zhang K, Guan Q, Guo H, Xu P, Wang J (2019) Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights. Constr Build Mater 225:1077–1085. https://doi.org/10.1016/j.conbuildmat.2019.07.196

    Article  CAS  Google Scholar 

  77. Trickey JP, Miner CS, Brownlee HJ (1923) Furfural resins. Ind Eng Chem 15:65–66. https://doi.org/10.1021/ie50157a039

    Article  CAS  Google Scholar 

  78. Sweeney OR, Arnold LK, Long JT (1952) Cast plastics from 2-furaldehyde. Ind Eng Chem 44:1582–1586. https://doi.org/10.1021/ie50511a029

    Article  CAS  Google Scholar 

  79. Oliveira FB, Gardrat C, Enjalbal C, Frollini E, Castellan A (2008) Phenol-furfural resins to elaborate composites reinforced with sisal fibers—molecular analysis of resin and properties of composites. J Appl Polym Sci 109:2291–2303. https://doi.org/10.1002/app.28312

    Article  CAS  Google Scholar 

  80. Sui G, Cheng Y, Yang X, Wang X, Wang Z (2019) Use of sustainable glucose and furfural in the synthesis of formaldehyde-free phenolic resole resins. J Appl Polym Sci. https://doi.org/10.1002/app.47732

    Article  Google Scholar 

  81. Cheng Y, Sui G, Liu H, Wang X, Yang X, Wang Z (2019) Preparation of highly phenol substituted bio-oil–phenol–formaldehyde adhesives with enhanced bonding performance using furfural as crosslinking agent. J Appl Polym Sci. https://doi.org/10.1002/app.46995

    Article  Google Scholar 

  82. Varela A, Oliveira G, Souza FG, Rodrigues CHM, Costa MAS (2013) New petroleum absorbers based on cardanol-furfuraldehyde magnetic nanocomposites. Polym Eng Sci 53:44–51. https://doi.org/10.1002/pen.23229

    Article  CAS  Google Scholar 

  83. Jia P, Lan X, Li X, Wang T (2019) Highly selective hydrogenation of furfural to cyclopentanone over a NiFe bimetallic catalyst in a methanol/water solution with a solvent effect. ACS Sustain Chem Eng 7:15221–15229. https://doi.org/10.1021/acssuschemeng.9b02112

    Article  CAS  Google Scholar 

  84. Hronec M, Fulajtarová K (2012) Selective transformation of furfural to cyclopentanone. Catal Commun 24:100–104. https://doi.org/10.1016/j.catcom.2012.03.020

    Article  CAS  Google Scholar 

  85. Wang W, Sun S, Han F, Li G, Shao X, Li N (2019) Synthesis of diesel and jet fuel range cycloalkanes with cyclopentanone and furfural. Catalysts 9:886. https://doi.org/10.3390/catal9110886

    Article  CAS  Google Scholar 

  86. Xu J, Li N, Yang X, Li G, Wang A, Cong Y, Wang X, Zhang T (2017) Synthesis of diesel and jet fuel range alkanes with furfural and angelica lactone. ACS Catal 7:5880–5886. https://doi.org/10.1021/acscatal.7b01992

    Article  CAS  Google Scholar 

  87. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189. https://doi.org/10.1039/c5ee02666k

    Article  CAS  Google Scholar 

  88. Lande S, Eikenes M, Westin M, Schneider MH (2008) Furfurylation of wood: chemistry, properties, and commercialization. ACS Symp Ser 982:337–355. https://doi.org/10.1021/bk-2008-0982.ch020

    Article  CAS  Google Scholar 

  89. Comyn J (1990) Wood adhesives: chemistry and technology, vol 2. MarcelDekker Inc, New York

    Google Scholar 

  90. Schmitt CR (1974) Polyfurfuryl alcohol resins. Polym Plast Technol Eng 3:121–158. https://doi.org/10.1080/03602557408545025

    Article  CAS  Google Scholar 

  91. U.S. Patent Office (2019) US2453704A—furfuryl alcohol-phenolic resins—Google Patents. https://patents.google.com/patent/US2453704A/en. Accessed 20 Oct 2019

  92. IFC (2016) IFC, the applications of furfuryl alcohol. http://www.furan.com/furfuryl_alcohol_applications.html. Accessed 20 Oct 2019

  93. Zarbin AJG, Bertholdo R, Oliveira MAFC (2002) Preparation, characterization and pyrolysis of poly(furfuryl alcohol)/porous silica glass nanocomposites: novel route to carbon template. Carbon 40:2413–2422. https://doi.org/10.1016/S0008-6223(02)00130-6

    Article  CAS  Google Scholar 

  94. Abdullah UHB, Pizzi A (2013) Tannin-furfuryl alcohol wood panel adhesives without formaldehyde. Eur J Wood Wood Prod 71:131–132. https://doi.org/10.1007/s00107-012-0629-4

    Article  CAS  Google Scholar 

  95. Kukacka L, Sugama T (1987) Furfuryl alcohol polymer concretes for use in all weather repairs of concrete and asphalt surfaces. Am Concrete Inst 99:91–111

    CAS  Google Scholar 

  96. TRB (2018) TRB develops new FST rated biocomposite rail carriage door leaf. In: Biobased news. http://news.bio-based.eu/trb-develops-new-fst-rated-biocomposite-rail-carriage-door-leaf/. Accessed 29 Oct 2019

  97. Falco G, Guigo N, Vincent L, Sbirrazzuoli N (2018) Opening furan for tailoring properties of bio-based poly(furfuryl alcohol) thermoset. Chemsuschem 11:1805–1812. https://doi.org/10.1002/cssc.201800620

    Article  CAS  PubMed  Google Scholar 

  98. Simeonov SP, Lazarova HI, Marinova MK, Popova MD (2019) Achmatowicz rearrangement enables hydrogenolysis-free gas-phase synthesis of pentane-1,2,5-triol from furfuryl alcohol. Green Chem 21:5657–5664. https://doi.org/10.1039/c9gc02888a

    Article  CAS  Google Scholar 

  99. Arnaiz M, Nair V, Mitra S, Ajuria J (2019) Furfuryl alcohol derived high-end carbons for ultrafast dual carbon lithium ion capacitors. Electrochim Acta 304:437–446. https://doi.org/10.1016/j.electacta.2019.03.029

    Article  CAS  Google Scholar 

  100. Wang Y, Zhao D, Triantafyllidis KS, Ouyang W, Luque R, Len C (2020) Microwave-assisted catalytic upgrading of bio-based furfuryl alcohol to alkyl levulinate over commercial non-metal activated carbon. Mol Catal. https://doi.org/10.1016/j.mcat.2019.110630

    Article  Google Scholar 

  101. Song C, Wang T, Qiu J (2009) Preparation of C/CMS composite membranes derived from poly(furfuryl alcohol) polymerized by iodine catalyst. Desalination 249:486–489. https://doi.org/10.1016/j.desal.2009.04.006

    Article  CAS  Google Scholar 

  102. He L, Li D, Zhang G, Webley PA, Zhao D, Wang H (2010) Synthesis of carbonaceous poly(furfuryl alcohol) membrane for water desalination. Ind Eng Chem Res 49:4175–4180. https://doi.org/10.1021/ie901886c

    Article  CAS  Google Scholar 

  103. Pan Y, Ju M, Wang C, Zhang L, Xu N (2010) Versatile preparation of monodisperse poly(furfuryl alcohol) and carbon hollow spheres in a simple microfluidic device. Chem Commun 46:3732–3734. https://doi.org/10.1039/c003161e

    Article  CAS  Google Scholar 

  104. Wang H, Yao J (2006) Use of Poly(furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites. Ind Eng Chem Res 45:6393–6404. https://doi.org/10.1021/ie0602660

    Article  CAS  Google Scholar 

  105. Lee J, Sohn K, Hyeon T (2002) Low-cost and facile synthesis of mesocellular carbon foams. Chem Commun 2:2674–2675. https://doi.org/10.1039/b208642e

    Article  CAS  Google Scholar 

  106. Primkulov B, Chalaturnyk J, Chalaturnyk R, Zambrano Narvaez G (2017) 3D printed sandstone strength: curing of furfuryl alcohol resin-based sandstones. 3D Print Addit Manuf 4:149–155. https://doi.org/10.1089/3dp.2017.0032

    Article  Google Scholar 

  107. Basso MC, Li X, Fierro V, Pizzi A, Giovando S, Celzard A (2011) Green, formaldehyde-free, foams for thermal insulation. Adv Mater Lett 2:378–382. https://doi.org/10.5185/amlett.2011.4254

    Article  CAS  Google Scholar 

  108. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/b922014c

    Article  CAS  Google Scholar 

  109. Werpy T, Petersen G (2004) Top value added chemicals from biomass volume I. Us nrel medium: ED; size. https://doi.org/10.2172/15008859

  110. Tong X, Ma Y, Li Y (2010) Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes. Appl Catal A 385:1–13. https://doi.org/10.1016/j.apcata.2010.06.049

    Article  CAS  Google Scholar 

  111. Van Putten RJ, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597. https://doi.org/10.1021/cr300182k

    Article  CAS  PubMed  Google Scholar 

  112. Teong SP, Yi G, Zhang Y (2014) Hydroxymethylfurfural production from bioresources: Past, present and future. Green Chem 16:2015–2026. https://doi.org/10.1039/c3gc42018c

    Article  CAS  Google Scholar 

  113. AvaBiochem (2019) 5-HMF the key to green chemistry. https://5-hmf.com/. Accessed 3 Nov 2019

  114. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793. https://doi.org/10.1039/c0gc00401d

    Article  CAS  Google Scholar 

  115. Gruter GJM, Dautzenberg F (2007) Method for the synthesis of organic acid esters of 5-hydroxymethylfurfural and their use. Eur. Pat, Appl, p 11

    Google Scholar 

  116. Fan W, Verrier C, Queneau Y, Popowycz F (2019) 5-Hydroxymethylfurfural (HMF) in organic synthesis: a review of its recent applications towards fine chemicals. Curr Org Synth 16:583–614. https://doi.org/10.2174/1570179416666190412164738

    Article  CAS  PubMed  Google Scholar 

  117. Kröger M, Prüße U, Vorlop KD (2000) A new approach for the production of 2,5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose. Top Catal 13:237–242. https://doi.org/10.1023/A:1009017929727

    Article  Google Scholar 

  118. YXY-Avantium. https://www.avantium.com/yxy/. Accessed 7 Dec 2019

  119. Gilman H, Wright GF (1932) Nuclear substitution and orientation of furan types. Chem Rev 11:323–367. https://doi.org/10.1021/cr60040a002

    Article  CAS  Google Scholar 

  120. Fittig R, Heinzelmann H (1876) Production of 2, 5-furandicarboxylic acid by the reaction of fuming hydrobromic acid with mucic acid under pressure. Chem Ber 9:1198

    Google Scholar 

  121. Seelig E (1879) Ueber Abkömmlinge der Schleimsäure. Ber Dtsch Chem Ges 12:1081–1092. https://doi.org/10.1002/cber.187901201285

    Article  Google Scholar 

  122. Yoder PA, Tollens B (1901) Ueber Dehydroschleimsäure: eine neue Darstellungsmethode, sowie verschiedene Salze und Ester derselben. Ber Dtsch Chem Ges 34:3446–3462. https://doi.org/10.1002/cber.19010340329

    Article  CAS  Google Scholar 

  123. Lewkowski J (2001) Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives. Arkivoc 2001:17–54. https://doi.org/10.3998/ark.5550190.0002.102

    Article  Google Scholar 

  124. Casanova O, Iborra S, Corma A (2009) Biomass into chemicals: aerobic oxidation of 5-hydroxymethyl-2-furfural into 2,5-furandicarboxylic acid with gold nanoparticle catalysts. Chemsuschem 2:1138–1144. https://doi.org/10.1002/cssc.200900137

    Article  CAS  PubMed  Google Scholar 

  125. Yi G, Teong SP, Li X, Zhang Y (2014) Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic acid. Chemsuschem 7:2131–2135. https://doi.org/10.1002/cssc.201402105

    Article  CAS  PubMed  Google Scholar 

  126. Boisen A, Christensen TB, Fu W, Gorbanev YY, Hansen TS, Jensen JS, Klitgaard SK, Pedersen S, Riisager A, Ståhlberg T, Woodley JM (2009) Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chem Eng Res Des 87:1318–1327. https://doi.org/10.1016/j.cherd.2009.06.010

    Article  CAS  Google Scholar 

  127. Motagamwala AH, Won W, Sener C, Alonso DM, Maravelias CT, Dumesic JA (2018) Toward biomass-derived renewable plastics: production of 2,5-furandicarboxylic acid from fructose. Sci Adv. https://doi.org/10.1126/sciadv.aap9722

    Article  PubMed  PubMed Central  Google Scholar 

  128. De Jong E, Dam MA, Sipos L, Gruter GJM (2012) Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. ACS Symp Ser 1105:1–13. https://doi.org/10.1021/bk-2012-1105.ch001

    Article  CAS  Google Scholar 

  129. Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103:143–157. https://doi.org/10.1007/s00253-018-9483-6

    Article  CAS  PubMed  Google Scholar 

  130. Wei L, Zhang J, Deng W, Xie S, Zhang Q, Wang Y (2019) Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles. Chem Commun 55:8013–8016. https://doi.org/10.1039/c9cc02877c

    Article  CAS  Google Scholar 

  131. Pal P, Saravanamurugan S (2019) Recent advances in the development of 5-hydroxymethylfurfural oxidation with base (nonprecious)-metal-containing catalysts. Chemsuschem 12:145–163. https://doi.org/10.1002/cssc.201801744

    Article  CAS  PubMed  Google Scholar 

  132. Building a better plastic bottle|October 30, 2017 Issue-Vol. 95 Issue 43|Chemical & Engineering News. https://cen.acs.org/articles/95/i43/Building-better-plastic-bottle.html. Accessed 7 Dec 2019

  133. Avantium commercialising PEF production—News—the chemical engineer. https://www.thechemicalengineer.com/news/avantium-commercialising-pef-production/. Accessed 8 Dec 2019

  134. Chinthapalli R, Skoczinski P, Carus M, Baltus W, De Guzman D, Käb H, Raschka A, Ravenstijn J (2019) Biobased building blocks and polymers—global capacities, production and trends, 2018–2023. Industrial Biotechnology 15:237–241. https://doi.org/10.1089/ind.2019.29179.rch

    Article  Google Scholar 

  135. Biron M (2017) Biobricks: the breakthrough of drop-in solutions. In: Industrial applications of renewable plastics: environmental, technological, and economic advances, chap 5. Elsevier, pp 155–369. https://doi.org/10.1016/b978-0-323-48065-9.00005-4

  136. Rosenboom JG, Hohl DK, Fleckenstein P, Storti G, Morbidelli M (2018) Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nat Commun. https://doi.org/10.1038/s41467-018-05147-y

    Article  PubMed  PubMed Central  Google Scholar 

  137. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47:1383–1391. https://doi.org/10.1021/ma5000199

    Article  CAS  Google Scholar 

  138. Kim M, Su Y, Aoshima T, Fukuoka A, Hensen EJM, Nakajima K (2019) Effective strategy for high-yield furan dicarboxylate production for biobased polyester applications. ACS Catal 9:4277–4285. https://doi.org/10.1021/acscatal.9b00450

    Article  CAS  Google Scholar 

  139. Lam JY, Shih CC, Lee WY, Chueh CC, Jang GW, Huang CJ, Tung SH, Chen WC (2018) Bio-based transparent conductive film consisting of polyethylene furanoate and silver nanowires for flexible optoelectronic devices. Macromol Rapid Commun. https://doi.org/10.1002/marc.201800271

    Article  PubMed  Google Scholar 

  140. Halasa A, Lapinski L, Reva I, Rostkowska H, Fausto R, Nowak MJ (2015) Three conformers of 2-furoic acid: structure changes induced with near-IR laser light. J Phys Chem A 119:1037–1047. https://doi.org/10.1021/jp512302s

    Article  CAS  PubMed  Google Scholar 

  141. Sohst O, Tollens B (1888) Über krystallisirte Zuckersäure (Zuckerlactonsäure). Justus Liebigs Annalen der Chemie 245:1–27. https://doi.org/10.1002/jlac.18882450102

    Article  Google Scholar 

  142. Tiemann F (1884) Einiges über den Abbau von salzsaurem Glucosamin. Ber Dtsch Chem Ges 17:241–251. https://doi.org/10.1002/cber.18840170174

    Article  Google Scholar 

  143. Tiemann F, Haarmann R (1886) Ueber Isozuckersäure. Ber Dtsch Chem Ges 19:1257–1281. https://doi.org/10.1002/cber.188601901284

    Article  Google Scholar 

  144. Fischer E, Piloty O (1909) Über eine neue Pentonsäure und die zweite inaktive Trioxyglutarsäure. Untersuchungen Über Kohlenhydrate und Fermente 1884–1908:440–451. https://doi.org/10.1007/978-3-642-99501-9_50

    Article  Google Scholar 

  145. Dunlop AP (1946) Process for manufacturing furoic acid and furoic acid salts. US patent 2,407,066

  146. Paul S, Santarelli F, Wojcieszak R, Dumeignil F, Cavani F (2019) Furoic acid preparation method. US20190382361A1

  147. Pugh A (2019) Heterocyclic chemistry. ED-TECH Press, Waltham Abbey Essex

    Google Scholar 

  148. Sajadi Z, Abrishami MM, Paricher-Mohseni Chapman JM, Hall IH (1984) Synthesis and evaluation of the antitumor properties of esters of 2-furoic acid and 2-furylacrylic acid. J Pharm Sci 73:266–267. https://doi.org/10.1002/jps.2600730233

    Article  CAS  PubMed  Google Scholar 

  149. Nishi K, Suzuki K, Sawamoto J, Tokizawa Y, Iwase Y, Yumita N, Ikeda T (2016) Inhibition of fatty acid synthesis induces apoptosis of human pancreatic cancer cells. Anticancer Res 36:4655–4660. https://doi.org/10.21873/anticanres.11016

    Article  CAS  PubMed  Google Scholar 

  150. D’Ischia M, Napolitano A, Pezzella A (2008) Pyrroles and their benzo derivatives: applications. In: Comprehensive heterocyclic chemistry III, vol 2. Elsevier, pp 353–388. https://doi.org/10.1016/b978-008096518-5.00047-2

  151. Jagadeesh MR, Suresh Kumar HM, Ananda Kumari R (2015) Crystal growth and characterization of a new NLO crystal: urea 2-furoic acid. Optik 126:4014–4018. https://doi.org/10.1016/j.ijleo.2015.07.190

    Article  CAS  Google Scholar 

  152. Uma B, Murugesan KS, Krishnan S, Das SJ, Boaz BM (2013) Optical and dielectric studies on organic nonlinear optical 2-furoic acid single crystals. Optik 124:2754–2757. https://doi.org/10.1016/j.ijleo.2012.08.075

    Article  CAS  Google Scholar 

  153. Zheng HY, Zhu YL, Bai ZQ, Huang L, Xiang HW, Li YW (2006) An environmentally benign process for the efficient synthesis of cyclohexanone and 2-methylfuran. Green Chem 8:107–109. https://doi.org/10.1039/b513584b

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austine O. Iroegbu.

Ethics declarations

Conflict of interest

No existing conflicts of interests.

Additional information

The original version of this article was revised: The first name of the third author was incorrect.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iroegbu, A.O., Sadiku, E.R., Ray, S.S. et al. Sustainable Chemicals: A Brief Survey of the Furans. Chemistry Africa 3, 481–496 (2020). https://doi.org/10.1007/s42250-020-00123-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-020-00123-w

Keywords

Navigation