Poly(1,2,3-triazolium imide)s Obtained Through AA + BB Click Polyaddition


A series of poly(ionic liquid)s (PILs) incorporating 1,2,3-triazolium and imide units are synthesized in three steps by AA + BB polyaddition between α,ω-diazido tetraethylene glycol and three aromatic bis-imide dipropargyl monomers using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) followed by N-alkylation of the resulting poly(1,2,3-triazole imide)s with iodomethane and subsequent anion exchange with lithium bis(trifluoromethylsulfonyl)imide. Structure/properties correlations of poly(1,2,3-triazole imide)s and corresponding poly(1,2,3-triazolium imide)s are discussed based on NMR spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), size exclusion chromatography (SEC) and solubility measurements.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic Liquid)s: an Update. Prog Polym Sci 38:1009–1036

    CAS  Google Scholar 

  2. 2.

    Obadia MM, Drockenmuller E (2016) Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes. Chem Commun 52:2433–2450

    CAS  Google Scholar 

  3. 3.

    Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly (ionic liquid)s. Electrochim Acta 175:18–34

    CAS  Google Scholar 

  4. 4.

    Shaplov AS, Ponkratov DO, Vygodskii YS (2016) Poly(ionic liquid)s: synthesis, properties, and application. Polym Sci Ser B 58:73–142

    CAS  Google Scholar 

  5. 5.

    Qian W, Texter J, Yan F (2017) Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 46:1124–1159

    CAS  PubMed  Google Scholar 

  6. 6.

    Chen M, White BT, Kasprzak CR, Long TE (2018) Advances in phosphonium-based ionic liquids and poly(ionic liquid)s as conductive materials. Eur Polym J 108:28–37

    CAS  Google Scholar 

  7. 7.

    Kohno Y, Saita S, Men Y, Yuan J, Ohno H (2015) Thermoresponsive polyelectrolytes derived from ionic liquids. Polym Chem 6:2163–2178

    CAS  Google Scholar 

  8. 8.

    Zhang W, Kochovski Z, Lu Y, Schmidt BVKJ, Antonietti M, Yuan J (2016) Internal morphology-controllable self-assembly in poly(ionic liquid) nanoparticles. ACS Nano 10:7731–7737

    CAS  PubMed  Google Scholar 

  9. 9.

    Cordella D, Ouhib F, Aqil A, Defize T, Jerome C, Serghei A, Drockenmuller E, Aissou K, Taton D, Detrembleur C (2017) Fluorinated poly(ionic liquid) diblock copolymers obtained by cobalt-mediated radical polymerization-induced self-assembly. ACS Macro Lett 6:121–126

    CAS  Google Scholar 

  10. 10.

    He H, Rahimi K, Zhong M, Mourran A, Luebke DR, Nulwala HB, Moeller M, Matyjaszewski K (2017) Cubosomes from hierarchical self-assembly of poly(ionic liquid) block copolymers. Nat Commun 8:14057

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Choi J-H, Xie W, Gu Y, Frisbie CD, Lodge TP (2015) Single ion conducting, polymerized ionic liquid triblock copolymer films: high capacitance electrolyte gates for n-type transistors. ACS Appl Mater Interfaces 7:7294–7302

    CAS  PubMed  Google Scholar 

  12. 12.

    Lee C-P, Ho K-C (2018) Poly(ionic liquid)s for dye-sensitized solar cells: a mini-review. Eur Polym J 108:420–428

    CAS  Google Scholar 

  13. 13.

    Ran J, Wu L, Varcoe JR, Ong AL, Poynton SD, Xu T (2012) Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. J Membr Sci 415–416:242–249

    Google Scholar 

  14. 14.

    Liu L, He S, Zhang S, Zhang M, Guiver MD, Li N (2016) 1,2,3-triazolium-based poly(2,6-dimethyl phenylene oxide) copolymers as anion exchange membranes. ACS Appl Mater Interfaces 8:4651–4660

    CAS  PubMed  Google Scholar 

  15. 15.

    Yin K, Zhang Z, Yang L, Hirano S-I (2014) An imidazolium based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries. J Power Sour 258:150–154

    CAS  Google Scholar 

  16. 16.

    Zhang P, Li M, Yang B, Fang Y, Jiang X, Veith GM, Sun X-G, Dai S (2015) Polymerized ionic networks with high charge density: quasi-solid electrolytes in lithium-metal batteries. Adv Mater 27:8088–8094

    CAS  PubMed  Google Scholar 

  17. 17.

    Tiruye GA, Muñoz-Torrero D, Palma J, Anderson M, Marcilla R (2015) All-solid state supercapacitors operating at 3.5 V by using ionic liquid based polymer electrolytes. J Power Sour 279:472–480

    Google Scholar 

  18. 18.

    Hernandez G, Isik M, Mantione D, Pendashteh A, Navalpotro P, Dejarav S, Marcilla R, Mecerreyes D (2017) Redox active poly(ionic liquid)s as active materials for energy storage applications. J Mater Chem A 5:16231

    CAS  Google Scholar 

  19. 19.

    Margaretta E, Fahs GB, Inglefield DL, Jangu C, Wang D, Heflin JR, Moore RB, Long TE (2016) Imidazolium-containing ABA triblock copolymers as electroactive devices. ACS App Mater Interfaces 8:1280–1288

    CAS  Google Scholar 

  20. 20.

    Lin H, Gong J, Eder M, Schuetz R, Peng H, Dunlop JWC, Yuan J (2017) Programmable actuation of porous poly(ionic liquid) membranes by aligned carbon nanotubes. Adv Mater Interfaces 4:1600768

    Google Scholar 

  21. 21.

    Guterman R, Ambrogi M, Yuan J (2016) Harnessing poly(ionic liquid)s for sensing applications. Macromol Rapid Commun 37:1106–1115

    CAS  PubMed  Google Scholar 

  22. 22.

    Shaplov AS, Ponkratov DO, Aubert P-H, Lozinskaya EI, Plesse C, Maziz A, Vlasov PS, Vidal F, Vygodskii YS (2014) Truly solid state electrochromic devices constructed from polymeric ionic liquids as solid electrolytes and electrodes formulated by vapor phase polymerization of 3,4-ethylenedioxythiophene. Polymer 55:3385–3396

    CAS  Google Scholar 

  23. 23.

    Zulfiqar S, Sarwar MI, Mecerreyes D (2015) Polymeric ionic liquids for CO2 capture and separation: potential, progress and challenges. Polym Chem 6:6435–6451

    CAS  Google Scholar 

  24. 24.

    Dai Z, Noble RD, Gin DL, Zhang X, Deng L (2016) combination of ionic liquids with membrane technology: a new approach for CO2 separation. J Membr Sci 497:1–20

    CAS  Google Scholar 

  25. 25.

    Munoz-Bonilla A, Fernandez-Garcia M (2018) Poly(ionic liquid)s antimicrobial materials. Eur Polym J 105:135–149

    CAS  Google Scholar 

  26. 26.

    Lambert R, Coupillaud P, Wirotius A-L, Vignolle J, Taton D (2016) Imidazolium-based poly(ionic liquid)s featuring acetate counter anions: thermally latent and recyclable precursors of polymersupported N-heterocyclic carbenes for organocatalysis. Macromol Rapid Commun 37:1143–1149

    CAS  PubMed  Google Scholar 

  27. 27.

    Liu Y, Cheng W, Zhang Y, Sun J, Zhang S (2017) Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO2 with epoxides. Green Chem 19:2184–2193

    CAS  Google Scholar 

  28. 28.

    Arslan M, Tasdelen MA (2019) Click chemistry in macromolecular design: complex architectures from functional polymers. Chem Afr 2:195–214

    Google Scholar 

  29. 29.

    Sood R, Zhang B, Serghei A, Bernard J, Drockenmuller E (2015) Triethylene glycol-based poly(1,2,3-triazolium acrylate)s with enhanced ionic conductivity. Polym Chem 6:3521–3525

    CAS  Google Scholar 

  30. 30.

    Tejero R, Arbe A, Fernandez-García M, Lopez D (2015) Nanostructuration by self-assembly in N-Alkyl thiazolium and triazolium side-chain polymethacrylates. Macromolecules 48:7180–7193

    CAS  Google Scholar 

  31. 31.

    Kallel Elloumi A, Abdelhedi Miladi I, Serghei A, Taton D, Aissou K, Ben Romdhane H, Drockenmuller E (2018) Partially biosourced Poly(1,2,3-triazolium)-based diblock copolymers derived from levulinic acid. Macromolecules 51:5820–5830

    CAS  Google Scholar 

  32. 32.

    Adzima BJ, Taylor SC, He H, Luecbke DR, Martyjaszewski K, Nulwala HB (2014) Vinyl-triazolium monomers: versatile and new class of radically polymerizable ionic monomers. J Polym Sci, Part A: Polym Chem 52:417–423

    CAS  Google Scholar 

  33. 33.

    Obadia MM, Colliat-Dangus G, Debuigne A, Serghei A, Detrembleur C, Drockenmuller E (2015) Poly(vinyl ester 1,2,3-triazolium)s: a new member of the poly(ionic liquid)s family. Chem Commun 51:3332–3335

    CAS  Google Scholar 

  34. 34.

    Jourdain A, Serghei A, Drockenmuller E (2016) Enhanced ionic conductivity of a 1,2,3-triazolium-based poly(siloxane ionic liquid) homopolymer. ACS Macro Lett 5:1283–1286

    CAS  Google Scholar 

  35. 35.

    Abdelhedi-Miladi I, Obadia MM, Allaoua I, Serghei A, Ben Romdhane H, Drockenmuller E (2014) 1,2,3-triazolium-based poly(ionic liquid)s obtained through click chemistry polyaddition. Macromol Chem Phys 215:2229–2236

    CAS  Google Scholar 

  36. 36.

    Colliat-Dangus G, Obadia MM, Vygodskii YS, Serghei A, Shaplov AS, Drockenmuller E (2015) Unconventional poly(ionic liquid)s combining motionless main chain 1,2,3-triazolium cations and high ionic conductivity. Polym Chem 6:4299–4308

    CAS  Google Scholar 

  37. 37.

    Flachard D, Serghei A, Fumagalli M, Drockenmuller E (2019) Main-chain poly(1,2,3-triazolium hydroxide)s obtained through AA + BB click polyaddition as anion exchange membranes. Polym Int 68:1591–1598. https://doi.org/10.1002/pi.5865

    CAS  Article  Google Scholar 

  38. 38.

    Wu J, Chen J, Wang J, Liao X, Xie M, Sun R (2015) Synthesis and conductivity of hyperbranched poly(triazolium)s with various end-capping groups. Polym Chem 7:633–642

    Google Scholar 

  39. 39.

    Wang C, Li H, Zhang H, Sun R, Song W, Xie M (2018) Enhanced ionic and electronic conductivity of polyacetylene with dendritic 1,2,3-triazolium-oligo(ethylene glycol) pendants. Macromol Chem Phys 219:1800025

    Google Scholar 

  40. 40.

    Liaw D-J, Wang K-L, Huang Y-C, Lee K-R, Lai J-Y, Ha C-S (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    CAS  Google Scholar 

  41. 41.

    Favvas EP, Katsaros FK, Papageorgiou SK, Sapalidis AA, Mitropoulos AC (2017) A review of the latest development of polyimide based membranes for CO2 separations. React Funct Polym 120:104–130

    CAS  Google Scholar 

  42. 42.

    Kammakakam I, Yoon HW, Nam S, Park HB, Kim T-H (2015) Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation. J Membr Sci 487:90–98

    CAS  Google Scholar 

  43. 43.

    Kammakakam I, Nam S, Kim T-H (2016) PEG-imidazolium-functionalized 6FDA-durene polyimide as a novel polymeric membrane for enhanced CO2 separation. RSC Adv 6:31083

    CAS  Google Scholar 

  44. 44.

    Gye B, Kammakakam I, You H, Nam S, Kim T-H (2017) PEG-imidazolium-incorporated polyimides as high-performance CO2-selective polymer membranes: the effects of PEG-imidazolium content. Sep Purif Technol 179:283–290

    CAS  Google Scholar 

  45. 45.

    Shaplov AS, Morozova SM, Lozinskaya EI, Valsov PS, Gouveia ASL, Tomé LC, Marrucho IM, Vygodskii YS (2016) Turning into poly(ionic liquid)s as a tool for polyimide modification: synthesis, characterization and CO2 separation properties. Polym Chem 7:580–591

    CAS  Google Scholar 

  46. 46.

    Hajipour AR, Abrishami F (2012) Synthesis and characterization of novel polyimides containing triazoles units in the main chain by click chemistry. J Appl Polym Sci 124:1757–1763

    CAS  Google Scholar 

  47. 47.

    Goswami LN, Houston ZH, Sarma SJ, Jalistgi SS, Hawthorne MF (2013) Efficient synthesis of diverse heterobifunctionalized clickable oligo(ethylene glycol) linkers: potential applications in bioconjugation and targeted drug delivery. Org Biomol Chem 11:1116–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Binauld S, Fleury E, Drockenmuller E (2010) Solving the loss of orthogonality during the polyaddition of α-azide-ω-alkyne monomers catalyzed by Cu(PPh3)3Br: application to the synthesis of high-molar mass polytriazoles. J Polym Sci Part A 48:2470–2476

    CAS  Google Scholar 

Download references


The authors gratefully acknowledge the financial support from the Tunisian Ministry of High Education and Scientific Research and IDEXLYON.

Author information



Corresponding author

Correspondence to Hatem Ben Romdhane.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 696 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anaya, O., Haddane, A., Drockenmuller, E. et al. Poly(1,2,3-triazolium imide)s Obtained Through AA + BB Click Polyaddition. Chemistry Africa 2, 713–721 (2019). https://doi.org/10.1007/s42250-019-00090-x

Download citation


  • Poly(ionic-liquid)s
  • Click chemistry
  • 1, 2, 3-Triazoliums
  • Polyimides
  • Step growth polymerization