Skip to main content
Log in

Effect of Polyethylene Glycol 12000 on Morphology and Corrosion Behavior of TiO(OH)2/MnO2/PEG12000 Composite Electrodeposited on Pure Copper

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

In this study, TiO(OH)2/MnO2/PEG12000 composite was elaborated on pure copper in a two-step deposition process in the presence of 1% w/v of polyethylene glycol 12000 (PEG12000). The influence of PEG12000 on the composite morphology, composition and surface roughness was studied by SEM–EDS and AFM techniques. The results show that a porous composite of a multilayer structure with PEG12000 dispersed spherical particles was synthesized. Though the roughness homogeneity of TiO(OH)2/MnO2/PEG12000 was slightly improved, carbon content ranges from 5 to 12 At% reflecting an adsorption process of PEG12000 during the composite deposition. Results were confirmed by XPS technique, which provides further evidence about the existence of PEG12000. High-resolution C1s and O1s signals affirm the presence of the characteristic C–O bond, resulting from the coupling of PEG12000 on the composite surface. The electrochemical corrosion was evaluated in chloride medium by OCP measurements and linear polarisation curves. It was found that the corrosion resistance of TiO(OH)2/MnO2 composite was improved markedly in the presence of PEG12000. The stability of TiO(OH)2/MnO2/PEG12000 composite was also studied by following the evolution of impedance parameters during immersion time in 0.05 M NaCl medium completed by a characterization of the composite morphology and composition at the end of immersion by SEM–EDS and XPS analysis. The composite indicates good stability due to the formation of PEG-CuCl complexes, capable of limiting the infiltration of Cl ions in both the composite and the substrate surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Besghaier R, Dhouibi L, Jeannin M, Safi MJ (2019) Chem Afr 2:1–13

    Google Scholar 

  2. Channouf RB, Souissi N, Zanna S, Ardelean H, Bellakhal N, Marcus P (2018) Chem Afr 1:167–174

    Google Scholar 

  3. Hefnawy A, Elkhoshkhany N, Essam A (2018) J Alloy Compd 735:600–606

    CAS  Google Scholar 

  4. Karimi MA, Aghaei VH, Nezhadali A, Ajami N (2019) J Mater Sci Mater Electron 30:6300–6310

    CAS  Google Scholar 

  5. Kumari S, Panigrahi A, Singh SK, Pradhan SK (2018) J Coat Technol Res 15:583–592

    CAS  Google Scholar 

  6. Tatsuma T, Saitoh S, Ohko Y (2001) Fujishima. Chem Mater 13:2838–2842

    CAS  Google Scholar 

  7. Subasri R, Shinohara T (2003) Electrochem Commun 5:897–902

    CAS  Google Scholar 

  8. Boulares A, Dhouibi L, Berçot P, Rezrazi EM (2018) Chem Afr 1:127–144

    Google Scholar 

  9. Boudellioua H, Hamlaoui Y, Tifouti L, Pedraza F (2019) Appl Surf Sci 473:449–460

    CAS  Google Scholar 

  10. Fouda AS, El-Dossoki FI, Shady IA (2018) Green Chem Lett Rev 11:67–77

    CAS  Google Scholar 

  11. El-Lateef HMA (2016) Res Chem Intermed 42:3219–3240

    Google Scholar 

  12. Kabir H, Nandyala SH, Rahman MM, Kabir MA, Pikramenou Z, Laver M, Stamboulis A (2019) Ceram Int 45:424–431

    CAS  Google Scholar 

  13. Chakrabarty B, Ghoshal AK, Purkait MK (2008) J Membr Sci 309:209–221

    CAS  Google Scholar 

  14. Ballesteros J, Díaz-Arista P, Meas Y, Ortega R, Trejo G (2007) Electrochim Acta 52:3686–3696

    CAS  Google Scholar 

  15. Wang X, Cai S, Liu T, Ren M, Huang K, Zhang R, Zhao H (2014) Ceram Int 40:3389–3398

    CAS  Google Scholar 

  16. Afroukhteh S, Dehghanian C, Emamy M (2012) Progr Nat Sci Mater Int 22:480–487

    Google Scholar 

  17. Nina Balès (2014) LES PEGS (Monograph, University of Quebec in Chicoutimi). http://www.uqac.ca. Accessed 1 Jan 2015

  18. Yougui L (2018) Practical electron microscopy and database. www.Globalsino.Com/EM/. Accessed 13 Dec 2018

  19. Shard AG, Spencer SJ (2019) Surf Interface Anal 51:618–626

    CAS  Google Scholar 

  20. Jin Y, Sun M, Mu D, Ren X, Wang Q, Wen L (2012) Electrochim Acta 78:459–465

    CAS  Google Scholar 

  21. Jin Y, Kondo K, Suzuki Y, Matsumoto T, Barkey DP (2005) Electrochem Solid State Lett 8:C6–C8

    CAS  Google Scholar 

  22. XPS, AES, UPS and ESCA. laSurface.com. http://www.lasurface.com/database/elementxps.php. Accessed 18 June 2019

  23. Landoulsi J, Genet MJ, Fleith S, Touré Y, Liascukiene I, Méthivier C, Rouxhet PG (2016) Appl Surf Sci 383:71–83

    CAS  Google Scholar 

  24. Blacha-Grzechnik A, Piwowar K, Zdyb T, Krzywiecki M (2018) Appl Surf Sci 457:221–228

    CAS  Google Scholar 

  25. Dai L, Xu D (2019) Tetrahedron Lett 60:1005–1010

    CAS  Google Scholar 

  26. Sun Q, Luo Y, Xiang P, Yang X, Shen M (2017) Forensic Sci Int 277:1–9

    CAS  PubMed  Google Scholar 

  27. Simpson DE, Johnson CA, Roy DJ (2019) Electrochem Soc 166:D3142–D3154

    CAS  Google Scholar 

  28. Hebert KR (2005) J Electrochem Soc 152:C283–C287

    CAS  Google Scholar 

  29. Gründer Y, Stettner J, Magnussen OM (2019) J Electrochem Soc 166:D3049–D3057

    Google Scholar 

  30. Lee H, Tsai ST, Wu PH, Dow WP, Chen CM (2019) Mater Charact 147:57–63

    CAS  Google Scholar 

  31. Zhu QS, Zhang X, Liu CZ, Liu HY (2019) J Electrochem Soc 166:D3006–D3012

    CAS  Google Scholar 

  32. Mroczka R, Łopucki R, Żukociński G (2019) Appl Surf Sci 463:412–426

    CAS  Google Scholar 

  33. Kear G, Barker BD, Stokes KR, Walsh FC (2007) Electrochim Acta 52:1889–1898

    CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  35. Chang T, Leygraf C, Wallinder IO, Jin Y (2019) J Electrochem Soc 166:D10–D20

    CAS  Google Scholar 

  36. Song SJ, Choi SR, Kim JG (2019) J Electroanal Chem 832:75–86

    CAS  Google Scholar 

  37. Biesinger MC (2017) Interface Anal 49:1325–1334

    CAS  Google Scholar 

  38. Orazem ME, Frateur I, Tribollet B, Vivier V, Marcelin S, Pébère N, Bunge AL, White EA, Riemer DP, Musiani M (2013) J Electrochem Soc 160:C215–C225

    CAS  Google Scholar 

  39. Song HK, Hwang HY, Lee KH, Dao LH (2000) Electrochim Acta 45:2241–2257

    CAS  Google Scholar 

  40. Rezaei Niya SM, Hoorfar M (2016) Electrochim Acta 188:98–102

    CAS  Google Scholar 

  41. Orazem ME, Pébère N, Tribollet B (2006) J Electrochem Soc 153:B129

    CAS  Google Scholar 

  42. Orazem ME (2013) ECS Trans 50:247–260

    Google Scholar 

  43. Augustin C (2008) Prévision Des Cinétiques de Propagation de Défauts de Corrosion Affectant Les Structures En Alliage d’aluminium 2024 (PhD Thesis, Toulouse University). http://ethesis.inp-toulouse.fr. Accessed 21 Nov 2012

  44. Ciccola A, Guiso M, Domenici F, Sciubba F, Bianco A (2017) Polym Degrad Stab 140:74–83

    CAS  Google Scholar 

  45. Wang L, Liu G, Xue D (2011) Electrochim Acta 56:6277–6283

    CAS  Google Scholar 

  46. Nicholson AP, Hemenway DR, Sampath WS, Barth KL (2017) J Vac Sci Technol A Vac Surf Films 35:041511

    Google Scholar 

  47. Zhong Y, Li Y, Li S, Feng S, Zhang Y (2014) Rsc Advances 4:40638–40642

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support provided by “Action Intégrée Franco-Tunisienne du Ministère des Affaires Etrangères et Européennes français et du Ministère de l’Enseignement Supérieur et de la Recherche Scientifique tunisien”. The authors acknowledge Dr. Olivier HEINTZ for XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Boulares.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulares, A., Dhouibi, L., Berçot, P. et al. Effect of Polyethylene Glycol 12000 on Morphology and Corrosion Behavior of TiO(OH)2/MnO2/PEG12000 Composite Electrodeposited on Pure Copper. Chemistry Africa 2, 645–661 (2019). https://doi.org/10.1007/s42250-019-00085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00085-8

Keywords

Navigation