Skip to main content
Log in

A Facile and Microwave Assisted Solvent Free Synthesis of Novel Indole Pyrimidine Imide Derivatives

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A series of novel indole derivatives bearing pyrimidine and cyclic imide scaffolds such as phthalic and maleic anhydrides has been designed and synthesized using both conventional and microwave irradiation (MW) methods under solvent free conditions. The title compounds have been developed by the reaction of 2-aminoo-4-hydroxy-6-(5,1-substituted-indol-3-yl) pyrimidine-5-carbonitrile with phthalic and maleic anhydrides individually using MW method. In addition, these target compounds were also synthesised under conventional heating method. A considerable increase in the reaction rate has been observed with better yields (90–92%) within 2–6 min using microwave irradiation in comparison to conventional thermal treatment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Buu Bui HT, Kim Ha QT, Won KO, Duy DV, Tram Chau YN, Kim Tu CT, Pham EC, Tran PT, Tran LT, Mai HV (2016) Microwave assisted synthesis and cytotoxic activity evaluations of new benzimidazole derivatives. Tetrahedron Lett 57:887–891

    Google Scholar 

  2. Sharma P, Reddy TS, Kumar NP, Senwar KR, Bhargava SK, Shankaraiah N (2017) Conventional and microwave-assisted synthesis of new 1Hbenzimidazole-thiazolidinedione derivatives: a potential anticancer scaffold. Eur J Med Chem 138:234–245

    CAS  PubMed  Google Scholar 

  3. Desai NC, Satodiya HM, Rajpara KM, Joshi VV, Vaghani HV (2017) A microwave-assisted facile synthesis of novel coumarin derivatives containing cyanopyridine and furan as antimicrobial agents. J Saudi Chem Soc 21:S153–S162

    CAS  Google Scholar 

  4. Shaikh IN, Bagwan UF, Hunagund SM (2018) Cu-catalyzed rapid synthesis of novel fluorinated indole derivatives under microwave irradiation. Chem Africa 1:3–9

    Google Scholar 

  5. Raval JP, Desai KG, Desai KR (2006) Neat reaction technology for the synthesis of 4-oxo-thiazolidines derived from 2-SH-benzothiazole and antimicrobial screening of some synthesized 4-thiazolidinones. J Iran Chem Soc 3:233–241

    Google Scholar 

  6. Raval JP, Desai JT, Desai CK, Desai KR (2008) A comparative study of microwave assisted and conventional synthesis of 2,3-dihydro-2-aryl-4-[4-(2-oxo-2H-chromen-3-yl)-1,3-thiazol-2-ylamino]-1,5-benzothiazepines and its antimicrobial activity. Arkivoc xii:233–244

    Google Scholar 

  7. Raval JP, Desai KR (2009) A comparative study of microwave-assisted and conventional synthesis of novel 2-(4-diethylamino-2-hydroxyphenyl)-3-substituted-thiazolidin-4-one derivatives. Lietuvos Mokslu Akademija 20:101–108

    CAS  Google Scholar 

  8. Raval JP, Patel HV, Patel PS, Patel NH, Desai KR (2009) A rapid convenient microwave assisted and conventional synthesis of novel azetidin-2-one derivatives as potent antimicrobial agents. Asian J Res Chem 2:171–177

    CAS  Google Scholar 

  9. Al-Hazimi HM, El-Faham A, Ghazzali M, Al-Farhan K (2012) Microwave irradiation: a facile, scalable and convenient method for synthesis of N-phthaloylamino acids. Arab J Chem 5:285–289

    CAS  Google Scholar 

  10. Ghazzali M, El-Faha A, Abd-Megeed A, Al-Farhan K (2012) Microwave-assisted synthesis, structural elucidation and biological assessment of 2-(2-aceta-midophenyl)-2-oxo-N-phenyl acetamide and N-(2-(2-oxo-2(phenylamino) acetyl) phenyl)propionamide derivatives. J Mol Struct 1013:163–167

    CAS  Google Scholar 

  11. Charde M, Shukla A, Bukhariya V, Mehta J, Chakole R (2012) A review on: a significance of microwave assist technique in green chemistry. Int J Phytopharm 2:39–50

    CAS  Google Scholar 

  12. Ravichandran S, Karthikeyan E (2011) Microwave synthesis—a potential tool for green chemistry. Int J Chem Tech Res 3:466–470

    Google Scholar 

  13. Farghaly AAH (2010) Synthesis of some new indole derivatives containing pyrazoles with potential antitumor activity. Arkivoc 11:177–187

    Google Scholar 

  14. Singh OM, Thokchom SP (2017) Recent progress in biological activities of indole and indole alkaloids. Mini Rev Med Chem 18(1):9–25

    Google Scholar 

  15. Sharma V, Kumar P, Pathaka K (2010) Biological importance of the indole nucleus in recent years: a comprehensive review. J Heterocycl Chem 47:491–502

    CAS  Google Scholar 

  16. Zhu GD, Gandhi VB, Gong J, Luo Y, Liu X, Shi Y, Guan R, Magnone SR, Klinghofer V, Johnson EF, Bouska J, Shoemaker A, Oleksijew A, Jarvis K, Park C, Jong RD, Oltersdorf T, Li Q, Rosenberg SH, Giranda VL (2006) Discovery and SAR of oxindole–pyridine-based protein kinase B/Akt inhibitors for treating cancers. Bioorg Med Chem Lett 16:3424–3429

    CAS  PubMed  Google Scholar 

  17. He L, Chang H, Chou TC, Savaraj N, Cheng CC (2003) Design of antineoplastic agents based on the ‘2-phenylnaphthalene-type’ structural pattern-synthesis and biological activity studies of 1H-indolo[3.2-c] quinoline derivatives. Eur J Med Chem 38:101–107

    CAS  PubMed  Google Scholar 

  18. Xu L, Russu WA (2013) Molecular docking and synthesis of novel quinazoline analogues as inhibitors of transcription factors NF-κB activation and their anti-cancer activities. Bioorg Med Chem 23:540–546

    Google Scholar 

  19. Nagarapu L, Vanaparthi S, Bantu R, Kumar CG (2013) Synthesis of novel benzo [4,5] thiazolo [1,2-a] pyrimidine-3-carboxylate derivatives and biological evaluation as potential anticancer agents. Eur J Med Chem 69:817–822

    CAS  PubMed  Google Scholar 

  20. Jain KS, Chitre TS, Miniyar PB, Kathiravan MK, Bendre VS, Veer VS, Shahane SR, Shishoo C (2006) Biological and medicinal significance of pyrimidines. J Curr Sci 90:793–803

    CAS  Google Scholar 

  21. Ballell L, Robert AF, Chung GAC, Young R (2007) New thiopyrazolo [3,4-d]pyrimidine derivatives as anti-mycobacterial agents. Bioorg Med Chem Lett 17:1736–1740

    CAS  PubMed  Google Scholar 

  22. Gorlitzer K, Herbig S, Walter RD (1997) Indeno [1,2-d]pyrimidin-4-ylamine. Pharmazie 52:670–672

    CAS  Google Scholar 

  23. Malik V, Singh P, Kumar S (2006) Unique chlorine effect in regioselective one-pot synthesis of 1-alkyl-/allyl-3-(o-chlorobenzyl) uracils: anti-HIV activity of selected uracil derivatives. Tetrahedron 62:5944–5951

    CAS  Google Scholar 

  24. Ungureanu M, Moldoveanu CC, Poeata A, Drochioiu G, Petrovanu M, Mangalagiu I (2006) Nouveaux dérivés pyrimidiniques doués d’activité antibactérienne ou fongistatique in vitro. Ann Pharm Fr 64:286–288

    Google Scholar 

  25. Wagner E, Al-Kadasi K, Zimecki M, Sawka Dobrowolska W (2008) Synthesis and pharmacological screening of derivatives of isoxazolo[4,5-d]pyrimidine. Eur J Med Chem 43:2498–2504

    CAS  PubMed  Google Scholar 

  26. Miyazaki Y, Matsunaga S, Tang J, Maeda Y, Nakano M, Philippe RJ, Shibahara M, Liu W, Sato H, Wang L, Notle RT (2005) Novel 4-amino-furo[2,3-d]pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Bioorg Med Chem Lett 15(9):2203–2207

    CAS  PubMed  Google Scholar 

  27. Nassar E (2010) Synthesis, (in vitro) antitumor and antimicrobial activity of some pyrazoline, pyridine and pyrimidine derivatives linked to indole moiety. J Am Sci 6(8):463–471

    Google Scholar 

  28. Zahran MAH, Ibrahim AM (2009) Synthesis and cellular cytotoxicities of new N-substituted indole-3-carbaldehyde and their indolylchalcones. J Chem Sci 121:455–462

    CAS  Google Scholar 

  29. Biradar JS, Somappa SB (2014) 2,5-Disubstituted novel indolyl pyrimidine analogues as potent antimicrobial agents. Der Pharm Lett 4:344–348

    Google Scholar 

  30. Saundane AR, Yarlakatti M, Walmik P, Katkar V (2012) Synthesis, antioxidant and antimicrobial evaluation of thiazolidinone, azetidinone encompassing indolylthienopyrimidines. J Chem Sci 124:469–481

    CAS  Google Scholar 

  31. Mohamed MS, Youns MM, Ahmed NM (2014) Novel indolylpyrimidine derivatives: synthesis, antimicrobial, and antioxidant evaluations. Med Chem Res 23:3374–3388

    CAS  Google Scholar 

  32. Prajapti SK, Nagarsenkar A, Guggilapu SD, Gupta KK, Allakonda L, Jeengar MK, Naidu VGM, Babu BN (2016) Synthesis and biological evaluation of oxindole linked indolyl-pyrimidine derivatives as potential cytotoxic agents. Bioorg Med Chem Lett 26:3024–3028

    PubMed  Google Scholar 

  33. Teisseire H, Vernet G (2001) Effects of the fungicide folpet on the activities of antioxidative enzymes in duckweed. Pestic Biochem Physiol 69(2):112–117

    CAS  Google Scholar 

  34. Orzeszko A, Kaminska B, Starosciak BJ (2002) Synthesis and antimicrobial activity of new adamantine derivatives III. Farmaco 57:619–624

    CAS  PubMed  Google Scholar 

  35. Chapman JM, Cocolas GH, Hall IH (1979) Hypolipidemic activity of phthalimide derivatives. 1. N-Substituted phthalimide derivatives. J Med Chem 22:1399–13402

    CAS  PubMed  Google Scholar 

  36. Sena VL, Srivastava RM, Silva RO, Lima VL (2003) Synthesis and hypolipidemic activity of N-substituted phthalimides. Farmaco 58:1283–1288

    CAS  PubMed  Google Scholar 

  37. Casaban-Ros E, Anton-Fos GM, Galvez J, Duart MJ, Garcia Domenech R (1999) Search for new antihistaminic compounds by molecular connectivity. Quant Struct Act Relatsh 18:35–43

    CAS  Google Scholar 

  38. Wiecek M, Kiec-Kononowicz K (2009) Synthesis and anticonvulsant evaluation of some N-substituted phthalimides. Acta Pol Pharm 66(4):249–255

    CAS  PubMed  Google Scholar 

  39. Vamecq J, Lambert D, Poupaert JH, Masereel B, Stables JP (1998) Anticonvulsant activity and interactions with neuronal voltage-dependent sodium channel of analogues of ameltolide. J Med Chem 41:3307–3313

    CAS  PubMed  Google Scholar 

  40. Shinji C, Nakamura T, Maeda S, Yoshida M, Hashimoto Y, Miyachi H (2005) Design and synthesis of phthalimide-type histone deacetylase inhibitors. Bioorg Med Chem Lett 15:4427–4431

    CAS  PubMed  Google Scholar 

  41. Ungwitayatorn J, Wiwat C, Matayatsuk C, Pimthon J, Piyaviriyakul S (2008) Synthesis and HIV-1 reverse transcriptase inhibitory activity of non-nucleoside phthalimide derivatives. Chin J Chem 26(2):379–384

    CAS  Google Scholar 

  42. Hargreaves MK, Pritchard JG, Dave HR (1970) Cyclic carboxylic monoimides. Chem Rev 70:439–469

    CAS  Google Scholar 

  43. Shibata Y, Sasaki K, Hashimoto Y, Iwasaki S (1996) Phenylphthalimides with tumor necrosis factor alpha production-enhancing activity. Chem Pharm Bull 44:156–162

    CAS  PubMed  Google Scholar 

  44. Axel GG, Jörg N, Photoinduced AD (2011) Electron-transfer chemistry of the bielectrophoric N-phthaloyl derivatives of the amino acids tyrosine, histidine and tryptophan. Beilstein J Org Chem 7:518–524

    Google Scholar 

  45. Hurd CD, Prapas AG (1959) Preparation of acyclic imides. J Org Chem 24:388–392

    CAS  Google Scholar 

  46. Walker MA (1995) A high yielding synthesis of N-alkyl maleimides using a novel modification of the mitsunobu reaction. J Org Chem 60:5352–5355

    CAS  Google Scholar 

  47. Aubert MT, Farnier M, Guilard R (1991) Reactivity of iminophosphoranes towards some symmetrical dicarbonyl dichlorides: syntheses and mechanisms. Tetrahedron 47:53

    CAS  Google Scholar 

  48. Sena VL, Srivastava RM, Silva RO, Lima VL (2003) Synthesis and hypolipidemic activity of N-substituted phthalimides. Farmaco 58:1283–1288

    CAS  PubMed  Google Scholar 

  49. Vasilevskaya TN, Yakovleva OD, Kobrin VSA (1995) A convenient method of N-methylphthalimide synthesis. Synth Commun 25:2463–2465

    CAS  Google Scholar 

  50. Dabiria M, Salehib P, Baghbanzadeha M, Shakouria M, Otokesha S, Ekramia T, Doostia R (2007) Efficient and eco-friendly synthesis of dihydropyrimidinones, bis(indolyl)methanes and N-alkyl and N-arylimides in ionic liquids. J Iran Chem Soc 4:393–401

    Google Scholar 

  51. Zhou MY, Li YQ, Xu XM (2003) A new simple and efficient synthesis of N-aryl phthalimides in ionic liquid [bmim] [PF6]. Synth Commun 33:3777–3780

    CAS  Google Scholar 

  52. Liang J, Lv J, Fan JC, Shang ZC (2009) Polyethylene glycol as a nonionic liquid solvent for the synthesis of N-alkyl and N-arylimides. Synth Commun 39:2822–2828

    CAS  Google Scholar 

  53. Gupta R, Jain A, Madan Y, Menghani E (2014) A “One Pot”, environmentally friendly, multicomponent synthesis of 2-amino-5-cyano-4-[(2-aryl)-1H-indol-3-yl]-6-hydroxypyrimidines and their antimicrobial activity. J Heterocycl Chem 51:1395–1403

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authorities of Jawaharlal Nehru Technological University, Hyderabad, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Goud Bakkolla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakkolla, M.G., Taduri, A.K. & Bhoomireddy, R.D. A Facile and Microwave Assisted Solvent Free Synthesis of Novel Indole Pyrimidine Imide Derivatives. Chemistry Africa 2, 587–595 (2019). https://doi.org/10.1007/s42250-019-00083-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00083-w

Keywords

Navigation