Skip to main content
Log in

A Highly Sensitive Electrochemical Biosensor Based on Carbon Black and Gold Nanoparticles Modified Pencil Graphite Electrode for microRNA-21 Detection

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

This work aims to develop cost-effective, simple and sensitive electrochemical biosensor for detection of microRNA-21. The combination of carbon black (CB) and gold nanoparticles (AuNPs) as nanohybrid was employed for the first time as a platform for microRNA-21 biosensor fabrication. The developed biosensor is based on the immobilization of thiolated capture probe (complementary sequence of microRNA-21) labeled with methylene blue on the surface of the pencil graphite electrode modified with CB/AuNPs nanohybrid. After hybridization with the target microRNA-21, the orientation of the labeled capture probe changed which causes a decrease of the response of methylene blue oxidation. Differential pulse voltammetry was used for monitoring the methylene blue response before and after hybridization. Under the optimal conditions, the developed biosensor was characterized using differential pulse voltammetry (DPV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The detection of microRNA-21 was carried out using a DPV. A wide linear range was obtained between 2.9 fM and 0.7 µM of microRNA-21. The calculated limit of detection was 1 fM of microRNA-21. This approach shows a good reproducibility, stability and an excellent selectivity. The proposed biosensor was used for microRNA-21 analysis in serum and a satisfactory result was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang H, Peng R, Wang J, Qin Z, Xue L (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 10:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. He L, Erratum Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    Article  CAS  Google Scholar 

  3. Hwang H-W, Mendell JT (2006) MicroRNAs in cell proliferation, cell death and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tavallaie R, De Almeida SRM, Gooding JJ (2015) Toward biosensors for the detection of circulating microRNA as a cancer biomarker: an overview of the challenges and successes: toward biosensors for the detection of circulating microRNA. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:580–592

    Article  CAS  PubMed  Google Scholar 

  5. Wu K, Li L, Li S (2015) Circulating microRNA-21 as a biomarker for the detection of various carcinomas: an updated meta-analysis based on 36 studies. Tumor Biol 36:1973–1981

    Article  CAS  Google Scholar 

  6. Li B, Liu F, Peng Y, Zhou Y, Fan W, Yin H, Ai S, Zhang X (2016) Two-stage cyclic enzymatic amplification method for ultrasensitive electrochemical assay of microRNA-21 in the blood serum of gastric cancer patients. Biosens Bioelectron 79:307–312

    Article  CAS  PubMed  Google Scholar 

  7. Kamal Masud M, Islam MN, Haque MH, Tanaka S, Gopalan V, Alici. Nguyen GNT, Lam AK, Hossain MSA, Yamauchi Y, Shiddiky MJA (2017) Gold-loaded nanoporous superparamagnetic nanocubes for catalytic signal amplification in detecting miRNA. Chem Commun 53:8231–4

  8. Alder H, Taccioli C, Chen H, Jiang Y, Smalley KJ, Fadda P, Ozer HG, Huebner K, Farber JL, Croce CM, Fong LY (2012) Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis 33:1736–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding L, Liu H, Zhang L, Li L, Yu J (2018) Label-free detection of microRNA based on the fluorescence quenching of silicon nanoparticles induced by catalyzed hairpin assembly coupled with hybridization chain reaction. Sens Actuators B Chem 254:370–376

    Article  CAS  Google Scholar 

  10. Jung S, Kim BK, Lee S, Yoon S, Im H-I, Kim SK (2018) Multiplexed on-chip real-time PCR using hydrogel spot array for microRNA profiling of minimal tissue samples. Sens Actuators B Chem 262:118–124

    Article  CAS  Google Scholar 

  11. Clancy E, Burke M, Arabkari V, Barry T, Kelly H, Dwyer RM, Kerin MJ, Smith TJ (2017) Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay. Anal Bioanal Chem 409:3497–3505

    Article  CAS  PubMed  Google Scholar 

  12. Kilic T, Erdem A, Ozsoz M, Carrara S (2018) microRNA biosensors: opportunities and challenges among conventional and commercially available techniques. Biosens Bioelectron 99:525–546

    Article  CAS  PubMed  Google Scholar 

  13. Ciui B, Jambrec D, Sandulescu R, Cristea C (2017) Bioelectrochemistry for miRNA detection. Curr Opin Electrochem 5:183–192

    Article  CAS  Google Scholar 

  14. Yu N, Wang Z, Wang C, Han J, Bu H (2017) Combining padlock exponential rolling circle amplification with CoFe2O4 magnetic nanoparticles for microRNA detection by nanoelectrocatalysis without a substrate. Anal Chim Acta 962:24–31

    Article  CAS  PubMed  Google Scholar 

  15. Yuan Y-H, Wu Y-D, Chi B-Z, Wen S-H, Liang R-P, Qiu J-D (2017) Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens Bioelectron 97:325–331

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Yan Y, Chen W, Cheng W, Li S, Ding X, Li D, Wang H, Ju H, Ding S (2015) A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 68:343–349

    Article  CAS  PubMed  Google Scholar 

  17. Asadzadeh-Firouzabadi A, Zare HR (2018) Preparation and application of AgNPs/SWCNTs nanohybrid as an electroactive label for sensitive detection of miRNA related to lung cancer. Sens Actuators B Chem 260:824–831

    Article  CAS  Google Scholar 

  18. Zhu D, Liu W, Zhao D, Hao Q, Li J, Huang J, Shi J, Chao J, Su S, Wang L (2017) Label-free electrochemical sensing platform for MicroRNA-21 detection using thionine and gold nanoparticles co-functionalized MoS 2 nanosheet. ACS Appl Mater Interfaces 9:35597–35603

    Article  CAS  PubMed  Google Scholar 

  19. Wu L, Xiong E, Zhang X, Zhang X, Chen J (2014) Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today 9:197–211

    Article  CAS  Google Scholar 

  20. Yammouri G, Mandli J, Mohammadi H, Amine A (2017) Development of an electrochemical label-free biosensor for microRNA-125a detection using pencil graphite electrode modified with different carbon nanomaterials. J Electroanal Chem 806:75–81

    Article  CAS  Google Scholar 

  21. Mandli J, Mohammadi H, Amine A (2017) Electrochemical DNA sandwich biosensor based on enzyme amplified microRNA-21 detection and gold nanoparticles. Bioelectrochemistry 116:17–23

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki K, Hosokawa K, Maeda M (2009) Controlling the number and positions of oligonucleotides on gold nanoparticle surfaces. J Am Chem Soc 131:7518–7519

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Li Z, Lai J, Tang X, Qiu P (2018) Sensitive and highly selective biosensor based on triangular Au nanoplates for detection of uric acid in human serum. Chem Afr 1:29–35

    Article  Google Scholar 

  24. Yang Y, Lu L, Tian X, Li Y, Yang C, Nie Y, Zhou Z (2019) Ratiometric fluorescence detection of mercuric ions by sole intrinsic dual-emitting gold nanoclusters. Sens Actuators B Chem 278:82–87

    Article  CAS  Google Scholar 

  25. Akyüz E, Şen FB, Bener M, Başkan KS, Tütem E, Apak R (2019) Protein-protected gold nanocluster-based biosensor for determining the prooxidant activity of natural antioxidant compounds. ACS Omega 4:2455–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cinti S, Arduini F, Carbone M, Sansone L, Cacciotti I, Moscone D, Palleschi G (2015) Screen-printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene. Electroanalysis 27:2230–2238

    Article  CAS  Google Scholar 

  27. Ricci F, Zari N, Caprio F, Recine S, Amine A, Moscone D, Palleschi G, Plaxco KW (2009) Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectrochemistry 76:208–213

    Article  CAS  PubMed  Google Scholar 

  28. Lucarelli F, Marrazza G, Turner AP, Mascini M (2004) Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens Bioelectron 19:515–530

    Article  CAS  PubMed  Google Scholar 

  29. Miao P, Wang B, Yu Z, Zhao J, Tang Y (2015) Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification. Biosens Bioelectron 63:365–370

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Jayachandran S, Li M, Xu S, Luo X (2018) Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling. Microchim Acta 185:156

    Article  CAS  Google Scholar 

  31. Liu S, Su W, Li Y, Zhang L, Ding X (2018) Manufacturing of an electrochemical biosensing platform based on hybrid DNA hydrogel: taking lung cancer-specific miR-21 as an example. Biosens Bioelectron 103:1–5

    Article  CAS  PubMed  Google Scholar 

  32. Liu S, Su W, Li Z, Ding X (2015) Electrochemical detection of lung cancer specific microRNAs using 3D DNA origami nanostructures. Biosens Bioelectron 71:57–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Fondation Lalla Salma-Prévention et Traitement du Cancer” under the Project AP2013; and the Islamic Educational, Scientific and Cultural Organization under the Project No. 3.8.2.1.1/3:ICPSR/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aziz Amine.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yammouri, G., Mohammadi, H. & Amine, A. A Highly Sensitive Electrochemical Biosensor Based on Carbon Black and Gold Nanoparticles Modified Pencil Graphite Electrode for microRNA-21 Detection. Chemistry Africa 2, 291–300 (2019). https://doi.org/10.1007/s42250-019-00058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00058-x

Keywords

Navigation