Skip to main content
Log in

Copper Complex: A Key Role in the Synthesis of Biocidal Polymer Coatings

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

A specific copper complex is used here for the development of new antibacterial coatings against two different bacteria strains i.e. Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Remarkably, the cationic polymerization of a glycerol-derived monomer was performed using an efficient Cu complex as a photoinitiator. The synthesized coatings which were successfully developed under UV–visible light exposure and under a solvent-free cationic photopolymerization process show excellent adhesion on stainless steel plate according to nanoindentation and scratch tests. The resulting glycerol-derived coatings have been conducted to assess the antibacterial activities against E. coli and S. aureus: a tremendous decrease of 99.9% and 96% of the adhered Escherichia coli and Staphylococcus aureus on the surface of copper containing coatings has been demonstrated in comparison with bare stainless steel supports. Finally, our investigation suggests from live/dead assays data that the synthesized polymer films show biocidal properties due to the release of Cu2+ ions, which are responsible for inhibiting bacterial proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Schema 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peleg AY, Hooper DC (2010) Hospital-acquired infections due to gram-negative bacteria. N Engl J Med 362:1804–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Curtis LT (2008) Prevention of hospital-acquired infections: review of non-pharmacological interventions. J Hosp Infect 69:204–219

    Article  CAS  PubMed  Google Scholar 

  3. Khan HA, Baig FK, Mehboob R (2017) Nosocomial infections: epidemiology, prevention, control and surveillance. Asian Pac J Trop Biomed 7:478–482

    Article  Google Scholar 

  4. Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS (1998) Bacterial adhesion on PEG modified polyurethane surfaces. Biomaterials 19:851–859

    Article  CAS  PubMed  Google Scholar 

  5. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343

    Article  CAS  Google Scholar 

  6. Genzer J, Menko KE (2006) Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. Biofouling 22:339–360

    Article  CAS  PubMed  Google Scholar 

  7. Manecka GM, Labrash J, Rouxel O, Dubot P, Lalevée J, Abbad Andaloussi S, Renard E, Langlois V, Versace DL (2014) Green photoinduced modification of natural poly(3-hydroxybutyrate-co-3-hydroxyvalerate) surface for antibacterial applications. ACS Substain Chem Eng 2:996–1006

    Article  CAS  Google Scholar 

  8. El Habnouni S, Darcos V, Garric X, Lavigne J-P, Nottelet B, Coudane J (2011) Mild methodology for the versatile chemical modification of polylactide surfaces: original combination of anionic and click chemistry for biomedical applications. Adv Funct Mater 21:3321–3330

    Article  CAS  Google Scholar 

  9. Feiertag P, Albert M, Ecker-Eckhofen E-M, Hayn G, Hönig H, Oberwalder HW, Saf R, Schmidt A, Schmidt O, Topchiev D (2003) Structural characterization of biocidal oligoguanidines. Macromol Rapid Commun 24:567–570

    Article  CAS  Google Scholar 

  10. Schmitt MA, Weisblum B, Gellman SH (2004) Unexpected relationships between structure and function in alpha, beta-peptides: antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc 126:6848–6849

    Article  CAS  PubMed  Google Scholar 

  11. Schmitt MA, Weisblum B, Gellman SH (2006) Interplay among folding, sequence, and lipophilicity in the antibacterial and hemolytic activities of α/β-peptides. J Am Chem Soc 129:417–428

    Article  CAS  Google Scholar 

  12. Kenawy ER, Mahmoud YAG (2003) Biologically active polymers, 6 synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups. Macromol Biosci 3:107–116

    Article  CAS  Google Scholar 

  13. Chang Y, Yandi W, Chen WY, Shih YJ, Yang CC, Ling QD, Higuchi A (2010) 1101, Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine. Biomacromol 11(2010):1101–1110

    Article  CAS  Google Scholar 

  14. Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, Wilson M (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    Article  CAS  PubMed  Google Scholar 

  15. Decraene V, Pratten J, Wilson M (2006) Cellulose acetate containing toluidine blue and rose bengal is an effective antimicrobial coating when exposed to white light. Appl Environ Microbiol 72:4436–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Condat M, Mazeran P-E, Malval J-P, Lalevée J, Morlet-Savary F, Renard E, Langlois V, Abbad Andaloussi S, Versace D-L (2015) Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Adv 5:85214–85224

    Article  CAS  Google Scholar 

  17. Condat M, Babinot J, Tomane S, Malval J-P, Kang I-K, Spillebout F, Mazeran P-E, Lalevée J, Andaloussi SA, Versace D-L (2016) Development of photoactivable glycerol-based coatings containing quercetin for antibacterial applications. RSC Adv 6:18235–18245

    Article  CAS  Google Scholar 

  18. Sautrot-Ba P, Contreras A, Abbad Andaloussi S, Coradin T, Helary C, Razza N, Sangermano M, Mazeran P-E, Malval J-P, Versace D-L (2017) Eosin-mediated synthesis of polymer coatings combining photodynamic inactivation and antimicrobial properties. J Mater Chem B 5:7572–7582

    Article  CAS  Google Scholar 

  19. Versace D-L, Ramier J, Grande D, Abbad Andaloussi S, Dubot P, Hobeika N, Malval J-P, Lalevee J, Renard E, Langlois V (2013) Versatile photochemical surface modification of biopolyester microfibrous scaffolds with photogenerated silver nanoparticles for antibacterial activity. Adv Healthcare Mater 2:1008–1018

    Article  CAS  Google Scholar 

  20. Lorenzini C, Haider A, Kang I-K, Sangermano M, Abbad-Andalloussi S, Mazeran P-E, Lalevée J, Renard E, Langlois V, Versace D-L (2015) Photoinduced development of antibacterial materials derived from isosorbide moiety. Biomacromolecules 16:683–694

    Article  CAS  PubMed  Google Scholar 

  21. Tang Z, Kotov NA, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2:413–418

    Article  CAS  PubMed  Google Scholar 

  22. Podsiadlo P, Paternel S, Rouillard JM, Zhang Z, Lee J, Lee JW, Gulari E, Kotov NA (2005) Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmuir 21:11915–11921

    Article  CAS  PubMed  Google Scholar 

  23. Amna T, Hassan MS, Barakat NAM, Pandeya DR, Hong ST, Khil M-S, Kim HY (2012) Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol 93:743–751

    Article  CAS  PubMed  Google Scholar 

  24. Chou P-T, Chi Y, Chung M-W, Lin C-C (2011) Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coord Chem Rev 255:2653–2665

    Article  CAS  Google Scholar 

  25. Reiser O (2016) Shining light on copper: unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc Chem Res 49:1990–1996

    Article  CAS  PubMed  Google Scholar 

  26. Zivic N, Bouzrati-Zerelli M, Kermagoret A, Dumur F, Fouassier J-P, Gigmes D, Lalevée J (2016) Photocatalysts in polymerization reactions. ChemCatChem 8:1617–1631

    Article  CAS  Google Scholar 

  27. Pan X, Lamson M, Yan J, Matyjaszewski K (2015) Photoinduced metal-free atom transfer radical polymerization of acrylonitrile. ACS Macro Lett 4:192–196

    Article  CAS  Google Scholar 

  28. Murtezi E, Yagci Y (2014) Simultaneous photoinduced ATRP and CuAAC reactions for the synthesis of block copolymers. Macromol Rapid Commun 35:1782–1787

    Article  CAS  Google Scholar 

  29. Yagci Y, Tasdelen MA, Jockusch S (2014) Reduction of Cu(II) by photochemically generated phosphonyl radicals to generate Cu(I) as catalyst for atom transfer radical polymerization and azide-alkyne cycloaddition click reactions. Polymer 55:3468–3474

    Article  CAS  Google Scholar 

  30. Dietlin C, Schweizer S, Xiao P, Zhang J, Morlet-Savary F, Graff B, Fouassier J-P, Lalevée J (2015) Photopolymerization upon LEDs: new photoinitiating systems and strategies. Polym Chem 6:3895–3912

    Article  CAS  Google Scholar 

  31. Dumur F (2015) Recent advances in organic light-emitting devices comprising copper complexes: a realistic approach for low-cost and highly emissive devices? Org Electron 21:27–39

    Article  CAS  Google Scholar 

  32. Paria S, Reiser O (2014) Copper in photocatalysis. ChemCatChem 6:2477–2483

    Article  CAS  Google Scholar 

  33. Al Mousawi A, Kermagoret A, Versace D-L, Toufaily J, Hamieh T, Graff B, Dumur F, Gigmes D, Fouassier JP, Lalevée J (2017) Copper photoredox catalysts for polymerization upon near UV or visible light: structure/reactivity/efficiency relationships and use in LED projector 3D printing resins. Polym Chem 8:568–580

    Article  CAS  Google Scholar 

  34. Block SS (2001) Definition in terms. In: Block SS (ed) Disinfection, sterilisation and preservation, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1857–1873

    Google Scholar 

  35. Dollwet HHA, Sorenson JRJ (2001) Historic uses of copper compounds in medicine. Trace elements in medicine, 2nd edn. The Humana Press Inc., Arkansas, pp 80–87

    Google Scholar 

  36. Gabbay J, Borkow G, Mishal L, Magen E, Zatcoff R, Shemer-Avni Y (2006) Copper oxide impregnated textiles with potent biocidal activities. J. Ind. Text. 35:323–335

    Article  CAS  Google Scholar 

  37. Hubacher D, Lara-Ricalde R, Taylor DJ, Guerra-Infante F, Guzman-Rodriguez R (2001) Use of copper intrauterine devices and the risk of tubal infertility among Nulligravid women. N Engl J Med 345:561–567

    Article  CAS  PubMed  Google Scholar 

  38. Hostynek JJ, Maibach HI (2003) Copper hypersensitivity: dermatologic aspects–an overview. Rev Environ Health 18:153–183

    Article  CAS  PubMed  Google Scholar 

  39. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  41. Coates GW, Hillmyer MA (2009) A virtual issue of macromolecules: “polymers from renewable resources”. Macromolecules 42:7987–7989

    Article  CAS  Google Scholar 

  42. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microscop 77:1541–1547

    Article  CAS  Google Scholar 

  43. Peter Pappas S, Pappas BC, Gatechair LR, Schnabel W (1984) Photoinitation of cationic polymerization. II. Laser flash photolysis of diphenyliodonium salts. J Polym Sci Polym Chem Ed 22:69–76

    Article  Google Scholar 

  44. Peter Pappas S, Pappas BC, Gatechair LR, Jilek JH, Schnabel W (1984) Photoinitiation of cationic polymerization. IV. Direct and sensitized photolysis of aryl lodonium and sulfonium salts. Polym Photochem 5:1–22

    Article  Google Scholar 

  45. Desimoni E, Casella GI, Monroe A, Salvi AM (1990) XPS determination of oxygen-containing functional groups on carbon-fibre surfaces and the cleaning of these surfaces. Surf Interface Anal 15:627–634

    Article  CAS  Google Scholar 

  46. Desimoni E, Casella GI, Salvi AM (1992) XPS/XAES study of carbon fibres during thermal annealing under UHV conditions. Carbon 30:521–526

    Article  CAS  Google Scholar 

  47. de Angelis BA, Rizzo C, Contarini S, Howlett SP (1991) XPS study on the dispersion of carbon additives in silicon carbide powders. Appl Surf Sci 51:177–183

    Article  Google Scholar 

  48. Thomas HR (1979) Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy. polystyrene/poly(ethylene oxide) diblock. J Am Chem Soc 12:323–329

    CAS  Google Scholar 

  49. Schmiers H, Friebel J, Streubel P, Hesse R, Kopsel R (1999) Change of chemical bonding of nitrogen of polymeric N-heterocyclic compounds during pyrolysis. Carbon 37:1965–1978

    Article  CAS  Google Scholar 

  50. Dementjeva AP, de Graaf UA, van de Sanden MCM, Maslakova KI, Naumkina AV, Serov AA (2000) X-Ray photoelectron spectroscopy reference data for identification of the C N phase in carbon nitrogen films. Diam Relat Mater 9:904–1907

    Google Scholar 

  51. Cardinaud CH, Lemperiere G, Peignon MC, Jouan PY (1993) Characterisation of TiN coatings and of TiN/Si interface by x-ray photoelectron spectroscopy and Auger electron spectroscopy. Appl Surf Sci 68:595–603

    Article  Google Scholar 

  52. Rosenbaum J, Versace D-L, Abbad-Andallousi S, Pires R, Azevedo C, Cenedese P, Dubot P (2017) Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants. Biomater Sci. 5:455–462

    Article  CAS  PubMed  Google Scholar 

  53. Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    Article  CAS  PubMed  Google Scholar 

  54. Espirito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802

    Article  CAS  PubMed  Google Scholar 

  55. Hong R, Kang TY, Michels CA, Gadura N (2012) Membrane lipid peroxidation in copper-alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol 78:1776–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Warnes SL, Caves V, Keevil CW (2012) Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Environ Microbiol 14:1730–1743

    Article  CAS  PubMed  Google Scholar 

  57. Emam HE, Ahmed HB, Bechtold T (2017) In-situ deposition of Cu2O micro-needles for biologically actives textiles and their release properties. Carbohydr Polym 165:255–265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNRS, UPEC and French National Agency (sPECTRAL project) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davy-Louis Versace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sautrot-Ba, P., Al Mousawi, A., Lalevée, J. et al. Copper Complex: A Key Role in the Synthesis of Biocidal Polymer Coatings. Chemistry Africa 2, 241–251 (2019). https://doi.org/10.1007/s42250-019-00045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-019-00045-2

Keywords

Navigation