Skip to main content

Advertisement

Log in

Cu-catalyzed Rapid Synthesis of Novel Fluorinated Indole Derivatives Under Microwave Irradiation

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Fluorinated indoles have received considerable attention because incorporation of fluorine into target molecule can influence reactivity, selectivity and biological activity. Herein, a simple microwave-assisted synthesis of novel fluorinated indole derivatives have been developed by the reaction of 5-fluoroindoline-2,3-dione with various anilines. The reaction could be conducted using readily available substrates within short periods of 9–15 min under microwave irradiation with good to excellent yields of the product (64–92%). This approach exploits the synthetic potential of microwave irradiation and copper dipyridine dichloride (CuPy2Cl2) combination and offers many advantages such as full reaction control, excellent product yields, shorter reaction time, eco-friendly procedure and rapid feedback.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Buu Bui HT, Kim Ha QT, Won KO, Duy DV, Tram Chau YN, Kim Tu CT, Pham EC, Tran PT, Tran LT, Mai HV (2016) Microwave assisted synthesis and cytotoxic activity evaluations of new benzimidazole derivatives. Tetrahedron Lett 57:887–891

    Article  CAS  Google Scholar 

  2. Sharma P, Reddy TS, Kumar NP, Senwar KR, Bhargava SK, Shankaraiah N (2017) Conventional and microwave-assisted synthesis of new 1Hbenzimidazole-thiazolidinedione derivatives: a potential anticancer scaffold. Eur J Med Chem 138:234–245

    Article  CAS  PubMed  Google Scholar 

  3. Desai NC, Satodiya HM, Rajpara KM, Joshi VV, Vaghani HV (2017) A microwave-assisted facile synthesis of novel coumarin derivatives containing cyanopyridine and furan as antimicrobial agents. J Saudi Chem Soc 21:S153–S162

    Article  CAS  Google Scholar 

  4. Bálint E, Keglevich G (2016) The spread of the application of the microwave technique in organic synthesis. In: Keglevich G (ed) Milestones in microwave chemistry, Switzerland: Springer International Publishing. pp 1–10. (ISBN: 978-3-319-30630-8)

  5. Kiss NZ, Bálint E, Keglevich G (2016) Microwave-assisted syntheses in organic chemistry. In: Keglevich G (ed) Milestones in microwave chemistry, Switzerland: Springer International Publishing. pp 11–46. (ISBN: 978-3-319-30630-8)

  6. Polshettiwar V, Varma RS (2008) Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media. Acc Chem Res 41:629–639

    Article  CAS  PubMed  Google Scholar 

  7. Caddick S, Fitzmaurice R (2009) Microwave enhanced synthesis. Tetrahedron 65:3325–3355

    Article  CAS  Google Scholar 

  8. Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesiste. Trahedron 57:9225–9283

    Article  CAS  Google Scholar 

  9. Arya K, Dandia A (2007) Synthesis of biologically important novel fluorinated spiro heterocycles under microwaves catalyzed by montmorillonite KSF. J Fluorine Chem 128:224–231

    Article  CAS  Google Scholar 

  10. Arya K, Rawat DS, Dandia A, Sasai H (2012) Bronsted acidic ionic liquids: green, efficient and reusable catalyst for synthesis of fluorinated spiro [indole-thiazinones/thiazolidinones] as antihistamic agents. J Fluorine Chem 137:117–122

    Article  CAS  Google Scholar 

  11. Liu XH, Weng JQ, Wang BL, Li YH, Tan CX, Li ZM (2014) Microwave-assisted synthesis and biological activity study of novel fluorinated 1,2,4-triazole derivatives. Res Chem Intermed 40:2605–2612

    Article  CAS  Google Scholar 

  12. Dandia A, SinghR Sachdeva H, Arya K (2001) Microwave assisted one pot synthesis of a series of trifluoromethyl substituted spiro [indole–triazoles]. J Fluorine Chem 111:61–67

    Article  CAS  Google Scholar 

  13. Sachdeva H, Dwivedi D, Khaturia S (2011) Aqua mediated facile synthesis of 2-(5/7-fluorinated-2-oxoindolin-3-ylidene)-N-(4-substituted phenyl) hydrazine carbothioamides. Res J Pharm Bio Chem Sci 2:213–219

    CAS  Google Scholar 

  14. Teng H (2012) Overview of the development of the fluoropolymer industry. Appl Sci 2:496–512

    Article  Google Scholar 

  15. Wang J, Maria SR, Acena JL, Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014) Fluorine in pharmaceutical industry: fluorine-containing drugs introduced to the market in the last decade (2001–2011) Chem. Rev. 114:2432–2506

    CAS  Google Scholar 

  16. Welch JT, Eswarakrishnan S (1991) Fluorine in bioorganic chemistry. Wiley, New York

    Google Scholar 

  17. Welch JT (1991) Selective fluorination in organic and bioorganic chemistry. American Chemical Society Washington DC

  18. Erian AW (2001) Recent trends in the chemistry of fluorinated five and six-membered heterocycles. J Heterocycl Chem 38:793–808

    Article  CAS  Google Scholar 

  19. Kirsch P (2004) Modern fluoroorganic chemistry: synthesis, reactivity and applications. Wiley, Weinheim

    Book  Google Scholar 

  20. Uneyama K (2006) Organofluorine chemistry. Blackwell, Oxford

    Book  Google Scholar 

  21. Regina GL, Coluccia A, Piscitelli F, Bergamini A, Sinistro A, Cavazza A (2007) Indolyl aryl sulfones as HIV-1 non-nucleoside reverse transcriptase inhibitors: role of two halogen atoms at the indole ring in developing new analogues with improved antiviral activity. J Med Chem 50:5034–5038

    Article  CAS  PubMed  Google Scholar 

  22. Ferro S, Luca LD, Barreca ML, Iraci N, Grazia SD, Christ F, Witvrouw M, Debyser Z, Chimirri A (2009) Docking studies on a new human immodeficiency virus integrase − Mg − DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions. J Med Chem 52:569–573

    Article  CAS  PubMed  Google Scholar 

  23. Filler R, Kobayashi Y, Yagupolskii (Eds.) L M (1993) Organofluorine compounds in medicinal chemistry and biomedical applications. Elsevier: Amsterdam

  24. Isanbor C, O’Hagan D (2006) Fluorine in medicinal chemistry: a review of anti-cancer agents. J Fluorine Chem 27:303–319

    Article  CAS  Google Scholar 

  25. Meanwell NA, Wallace OB, Fang H, Wang H, Deshpande M, Wang T, Yin Z, Zhang Z, Pearce BC, James J, Yeung KS, Qiu Z, Wright JJK, Yang Z, Zadjura L, Tweedie DL, Yeola S, Zhao F, Ranadive S, Robinson BA, Gong YF, Wang HGH, Blair WS, Shi PY, Colonno RJ, Lin PF (2009) Inhibitors of HIV-1 attachment. Part 2: an initial survey of indole substitution patterns. Bioorg Med Chem Lett 19:1977–1981

    Article  CAS  PubMed  Google Scholar 

  26. Haj Tehrani KME, Hashemi M, Hassan M, Kobarfard F, Mohebbi S (2016) Synthesis and antibacterial activity of Schiff bases of 5-substituted Isatins. Chin Chem Lett 27:221–225

    Article  CAS  Google Scholar 

  27. Bjeldanes LF, Le HT, Firestone GL (2013) US Patent 2005/58600 (A1) 2005

  28. Bari S, Mandi S, Ugale V, Rao V, Akena V (2015) Rational design and synthesis of benzothiazole-isatins for antimicrobial and cytotoxic activities. Indian J Chem 54B:418–429

    CAS  Google Scholar 

  29. Khan FA, Maalik A (2015) advances in pharmacology of isatin and its derivatives: a review. Tropical J Pharm Res 14:1937–1942

    Article  CAS  Google Scholar 

  30. Lu RJ, Tucker JA, Zinevitch T, Kirichenko O, Konoplev V, Kuznetsova S, Sviridov S, Pickens J, Tandel S, Brahmachary E, Yang Y, Wang J, Freel S, Fisher S, Sullivan A, Zhou J, Stanfield OS, Greenberg M, Bolognesi D, Bray B, Koszalka B, Jeffs P, Khasanov A, Ma YA, Jeffries C, Liu C, Zhu T, Chucholowski A, Li R, Sexton C (2007) Design and synthesis of human immunodeficiency virus entry inhibitors: sulfonamide as an isostere for the α-ketoamide group. J Med Chem 50:6535–6544

    Article  CAS  PubMed  Google Scholar 

  31. Soubhye J, Aldib I, Elfving B, Gelbcke M, Furtmuller PG, Podrecca M, Conotte R, Colet JM, Rousseau A, Reye F, Sarakbi A, Vanhaeverbeek M, Kauffmann JM, Obinge C, Neve J, Prevost M, Boudjeltia KZ, Dufrasne F, Antwerpen PV (2013) Design, synthesis, and structure-activity relationship studies of novel 3-alkylindole derivatives as selective and highly potent myeloperoxidase inhibitors. J Med Chem 56:3943–3958

    Article  CAS  PubMed  Google Scholar 

  32. Frost JM, Dart MJ, Tietje KR, Garrison TR, Grayson GK, Daza AV, El-Kouhen OF, Miller LN, Li L, Yao BB, Hsieh GC, Pai M, Zhu CZ, Chandran P, Meyer MD (2008) Indol-3-yl-tetramethylcyclopropyl Ketones: effects of indole ring substitution on CB2 cannabinoid receptor activity. J Med Chem 51:1904–1912

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to University Scientific Instrumentation Center, Karnatak University Dharwad, Karnataka, INDIA and SECAB A.R.S Inamdar College for Women, Vijayapur, Karnataka, INDIA for providing Instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan N. Shaikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, I.N., Bagwan, U.F., Hunagund, S.M. et al. Cu-catalyzed Rapid Synthesis of Novel Fluorinated Indole Derivatives Under Microwave Irradiation. Chemistry Africa 1, 3–9 (2018). https://doi.org/10.1007/s42250-018-0013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0013-9

Keywords

Navigation