Advertisement

Chemistry Africa

, Volume 1, Issue 1–2, pp 67–77 | Cite as

Completely Unexpected Coordination Selectivity of Copper Iodide for Thioether Over Ethynyl

  • Antoine Bonnot
  • Frank Juvenal
  • Adrien Schlachter
  • Daniel Fortin
  • Pierre D. Harvey
Original Article

Abstract

The reactivity of the tetradentate ligand bis(p-thiomethylphenylacetylene) (MeSC6H4C≡C–C≡CC6H4SMe; L2) towards the CuI salt is compared to that for the known organometallic analogue trans-bis(p-thiomethylethynylbenzene)bis(trimethyl-phosphine)platinum(II) (trans-Pt(PMe3)2(C≡CC6H4SMe)2; L1). While L1 with CuI form a highly luminescent porous 2D coordination polymer (CP) of general formula ([Cu4I4]L1 · EtCN)n (CP1; Juvenal et al. in Inorg Chem 55:11096–11109, 2016) exhibiting both Cu(η2–C≡C) and Cu–S bonds, L2 reacts with CuI to produce a luminescent non-porous 2D CP exhibiting the general formula ([Cu4I4]{L2}3)n, CP2, which does not use the highly expected Cu(η2–C≡C) linkage, relying strictly upon Cu–S coordination. An examination of the X-ray structures for both L2 and CP2 indicates that CP2 network is built upon an expansion of the L2 lattice (plane sliding and slight L2L2 distance separation) resembling to a sort of template effect. CP2 has been characterized by TGA, UV–Vis, emission spectroscopy, and photophysics, which are accompanied by DFT and TDDFT computations.

Graphical abstract

Keywords

Coordination polymer Luminescence DFT compuations Template Copper Thioether 

Notes

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Fonds de recherche du Québec-Nature et technologies, Compute Canada and Calcul Québec, and the Centre Quebecois sur les Matériaux Fonctionnels.

Supplementary material

42250_2018_4_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2472 kb)

References

  1. 1.
    Olbrich FA, Kopf JO, Weiss ER, Krebs AD, Müller S (1990) Acta Crystallogr C Cryst Struct Commun 46:1650–1652CrossRefGoogle Scholar
  2. 2.
    Olbrich F, Gröger G, Behrens U (1999) Zeitschrift für Kristallographie-New Crystal Structures 214:195–200CrossRefGoogle Scholar
  3. 3.
    Olbrich F, Schmidt G, Weiss E, Behrens U (1993) J Organomet Chem 456:299–303CrossRefGoogle Scholar
  4. 4.
    Gröger G, Olbrich F, Weiss E, Behrens U (1996) J Organomet Chem 514:81–86CrossRefGoogle Scholar
  5. 5.
    Gröger G, Olbrich F, Schulte P, Behrens U (1998) J Organomet Chem 557:251–258CrossRefGoogle Scholar
  6. 6.
    Olbrich F, Behrens U, Schmidt G, Weiss E (1993) J Organomet Chem 463:249–254CrossRefGoogle Scholar
  7. 7.
    Olbrich F, Behrens U, Gröger G, Weiss E (1993) J Organomet Chem 448:C10–C12CrossRefGoogle Scholar
  8. 8.
    Olbrich F, Behrens U, Weiss E (1994) J Organomet Chem 472:365–370CrossRefGoogle Scholar
  9. 9.
    Schmidt G, Behrens U (1996) J Organomet Chem 509:49–55CrossRefGoogle Scholar
  10. 10.
    Schulte P, Gröger G, Behrens U (1999) Z Anorg Allg Chem 625:1447–1452CrossRefGoogle Scholar
  11. 11.
    Schulte P, Gröger G, Behrens U (2000) Z Anorg Allg Chem 626:679–686CrossRefGoogle Scholar
  12. 12.
    Schulte P, Schmidt G, Kramer CP, Krebs A, Behrens U (1997) J Organomet Chem 530:95–100CrossRefGoogle Scholar
  13. 13.
    Schulte P, Behrens U, Olbrich F (2000) Z Anorg Allg Chem 626:1692–1696CrossRefGoogle Scholar
  14. 14.
    Brussaard Y, Olbrich F, Behrens U (1996) J Organomet Chem 519:115–123CrossRefGoogle Scholar
  15. 15.
    Gröger G, Behrens U, Olbrich F (2000) Organometallics 19:3354–3360CrossRefGoogle Scholar
  16. 16.
    Olbrich F, Schmidt G, Behrens U, Weiss E (1991) J Organomet Chem 418:421–429CrossRefGoogle Scholar
  17. 17.
    Olbrich F, Kopf J, Weiss E (1993) J Organomet Chem 456:293–298CrossRefGoogle Scholar
  18. 18.
    Schulte P, Gröger G, Behrens U (1999) J Organomet Chem 584:1–10CrossRefGoogle Scholar
  19. 19.
    Kuznetsova OA, Khmara EF, Filyakova VI, Uimin MA, Ermakov AE, Rhee CK, Charushin VN (2007) Russ J Gen Chem 77:404–408CrossRefGoogle Scholar
  20. 20.
    Shirtcliff LD, Haley MM, Herges R (2007) J Org Chem 72:2411–2418CrossRefGoogle Scholar
  21. 21.
    Biswas M, Nguyen P, Marder TB, Khundkar LR (1997) J Phys Chem A 101:1689–1695CrossRefGoogle Scholar
  22. 22.
    Steffen A, Ward RM, Tay MG, Edkins RM, Seeler F, van Leeuwen M, Pålsson LO, Beeby A, Batsanov AS, Howard JA, Marder TB (2014) Chem Eur J 20:3652–3666CrossRefGoogle Scholar
  23. 23.
    Juvenal F, Bonnot A, Fortin D, Harvey PD (2017) ACS Omega 2:7433–7443CrossRefGoogle Scholar
  24. 24.
    Juvenal F, Langlois A, Bonnot A, Fortin D, Harvey PD (2016) Inorg Chem 55:11096–11109CrossRefGoogle Scholar
  25. 25.
    Aly SM, Pam A, Khatyr A, Knorr M, Rousselin Y, Kubicki MM, Bauer JO, Strohmann C, Harvey PD (2014) J Inorg Organomet Poly Mat 24:190–200CrossRefGoogle Scholar
  26. 26.
    Knorr M, Guyon F, Khatyr A, Daeschlein C, Strohmann C, Aly SM, Abd-El-Aziz AS, Fortin D, Harvey PD (2009) Dalton Trans (6):948–955Google Scholar
  27. 27.
    Cardolaccia T, Li Y, Schanze KS (2008) J Am Chem Soc 130:2535–2545CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven TK, Kudin KN, Burant JC, Millam JM (2004) Gaussian 03, revision C. 02. Gaussian Inc, Wallingford, p 26Google Scholar
  29. 29.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871CrossRefGoogle Scholar
  30. 30.
    Kohn W, Sham LJ (1965) J Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  31. 31.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, OxfordGoogle Scholar
  32. 32.
    Salahub DR, Zerner MC (1989) The challenge of d and f electrons: theory and computation. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  33. 33.
    Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464CrossRefGoogle Scholar
  34. 34.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449CrossRefGoogle Scholar
  35. 35.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224CrossRefGoogle Scholar
  36. 36.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  37. 37.
    Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200–206CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  39. 39.
    Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939–947CrossRefGoogle Scholar
  40. 40.
    Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) J Am Chem Soc 104:2797–2803CrossRefGoogle Scholar
  41. 41.
    Pietro WJ, Francl MM, Hehre WJ, Defrees DJ, Pople JA, Binkley JS (1982) J Am Chem Soc 104:5039–5048CrossRefGoogle Scholar
  42. 42.
    Dobbs KD, Hehre WJ (1986) J Comput Chem 7:359–378CrossRefGoogle Scholar
  43. 43.
    Dobbs KD, Hehre WJ (1987) J Comput Chem 8:861–879CrossRefGoogle Scholar
  44. 44.
    Dobbs KD, Hehre WJ (1987) J Comput Chem 8:880–893CrossRefGoogle Scholar
  45. 45.
    O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comp Chem 29:839–845CrossRefGoogle Scholar
  46. 46.
    Bruker AXS (2008) APEX2, V2008. 6, SADABS V2008/1, SAINT V7. 60A, SHELXTL V6. 14. Bruker AXS Inc., MadisonGoogle Scholar
  47. 47.
    Harvey PD, Knorr M (2016) J Inorg Organomet Polym Mater 26:1174–1197CrossRefGoogle Scholar
  48. 48.
    Harvey PD, Knorr M (2015) J Clust Sci 26:411–459CrossRefGoogle Scholar
  49. 49.
    Harvey PD, Knorr M (2010) Macromol Rapid Commun 31:808–826CrossRefGoogle Scholar
  50. 50.
    Marineau-Plante G, Juvenal F, Langlois A, Fortin D, Soldera A, Harvey PD (2018) Chem Commun 54:976–979CrossRefGoogle Scholar
  51. 51.
    Chan YH, Lin JT, Chen IW, Chen CH (2005) J Phys Chem B 109:19161–19168CrossRefGoogle Scholar
  52. 52.
    Kovacs A, Frenking G (1999) Organometallics 18:887–894CrossRefGoogle Scholar
  53. 53.
    Hill JO, Murray JP (1993) Rev Inorg Chem 13:183–197Google Scholar
  54. 54.
    Cavel KJ, Hill JO, Magee RJ (1980) J Chem Soc Dalton Trans 1638:1640Google Scholar
  55. 55.
    Thomas TM, Grimm FA, Carlson TA (1982) Agron PA 25:159–169Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département de ChimieUniversite de SherbrookeSherbrookeCanada

Personalised recommendations