Skip to main content
Log in

DFT and TD-DFT Studies of Mg-Substitution in Chlorophyll by Cr(II), Fe(II) and Ni(II)

  • Original Article
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Electronic contributions in electronic transitions and energetic data associated to the Mg-substitution in chlorophyll by three transition metals: chrom (Cr2+), iron (Fe2+) and nickel (Ni2+) have been studied theoretically using density functional theory and time dependent density functional theory (TD-DFT) methods. The binding energies are stronger than for Mg2+ in the case of all three cations especially in the case of Ni2+. The Mg-substitution process is found to be exergonic for all title elements in gas phase and in acetonitrile using both implicit and explicit models of solvation. The natural population analysis results, which estimated by natural bond orbital analysis, showed significant charge transfer from pheophytin ligand to the central cation. The UV–visible proprieties of the different substitution compounds have been studied using the TD-DFT method evidencing that substitution of Mg by Cr, Fe or Ni is associated to a blue shift of the Q-band for the three cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Adapted from ref. 32

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science Ltd., Oxford

    Book  Google Scholar 

  2. Ke B (2001) Photosynthesis: photobiochemistry and photobiophysics. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Whitmarsh J, Govindjee (1999) Dans concept in photobiology photosynthesis and photomorphogenesis. In: Singhal GS, Renger G, Sopory SK, Irragang KD, Govindjee (eds) The photosynthetic process. Norosa Publishers, New Delhi, pp 11–51

    Google Scholar 

  4. Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  CAS  PubMed  Google Scholar 

  5. Mustardy L, Garab G (2003) Trends Plant Sci 8:117–122

    Article  CAS  PubMed  Google Scholar 

  6. Shimoni E, Rav-Hon O, Ohad I, Brumfeld V, Reich Z (2005) Plant Cell 17:2580–2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mroz P, Bhaumik J, Dogutan DK, Aly Z, Kamal Z, Khalid L, Kee HL, Bocian DF, Holten D, Lindsey JS, Hamblin MR (2009) Cancer Lett 282:63–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Amao Y, Yamada Y, Aoki K (2004) J Photochem Photobiol A 164:47–51

    Article  CAS  Google Scholar 

  9. Wang X-F, Xiang J, Wang P, Koyama Y, Yanagida S, Wada Y, Hamada K, Sasaki S, Tamiaki H (2005) Chem Phys Lett 408:409–414

    Article  CAS  Google Scholar 

  10. Wang X-F, Koyama Y, Kitao O, Wada Y, Sasaki S, Tamiaki H, Zhou H (2010) Biosens Bioelectron 25:1970–1976

    Article  CAS  PubMed  Google Scholar 

  11. Wang X-F, Kitao O, Hosono E, Zhou H, Sasaki S, Tamiaki H (2010) J Photochem Photobiol 210:145–152

    Article  CAS  Google Scholar 

  12. Wang X-F, Tamiaki H, Wang L, Tamai N, Kitao O, Zhou H, Sasaki S (2010) Langmuir 26:6320–6327

    Article  CAS  PubMed  Google Scholar 

  13. Wang X-F, Kitao O (2012) Molecules 17:4484–4497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryan A, Senge MO (2015) Photochem Photobiol Sci 14:638–660

    Article  CAS  PubMed  Google Scholar 

  15. Hübner R, Astin KB, Herbert RJH (2010) J Environ Monit 12:1511–1514

    Article  CAS  PubMed  Google Scholar 

  16. Küpper H, Setlik I, Spiller M, Küpper FC, PráSil O (2002) J Phycol 38:429–441

    Article  Google Scholar 

  17. Luna CM, González CA, Trippi VS (1994) Plant Cell Physiol 35:785–791

    Article  Google Scholar 

  18. Bushnell TP, Bushnell D, Jagendorf AT (1993) Plant Physiol 103:585–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jegerschoeld C, Arellano JB, Schroeder WP, van Kan PJ, Baron M, Styring S (1995) Copper (II) inhibition of electron transfer through photosystem II studied by EPR spectroscopy. Biochemistry 34(39):12747–12754

    Article  CAS  Google Scholar 

  20. Hsu BD, Lee JY (1988) Plant Physiol 87:116–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sas KN, Kovács L, Zsίros O et al (2006) J Biol Inorg Chem 11:725

    Article  CAS  PubMed  Google Scholar 

  22. Zvezdanovic J, Markovic D, Nikolic G (2007) J Serb Chem Soc 72:1053

    Article  CAS  Google Scholar 

  23. Zvezdanovic J, Markovic D (2009) Russ J Phys Chem 38:1542

    Article  CAS  Google Scholar 

  24. Boucher LJ, Katz JJ (1976) J Am Chem Soc 89:4703

    Article  Google Scholar 

  25. Petrovic J, Nikolic G, Markovic D (2006) J Serb Chem Soc 71:501

    Article  CAS  Google Scholar 

  26. Küpper H, Küpper F, Spiller M (1996) J Exp Bot 47:259

    Article  Google Scholar 

  27. Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) J Exp Bot 52:2291

    Article  PubMed  Google Scholar 

  28. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Planta 212:75

    Article  PubMed  Google Scholar 

  29. De Filippis LF, Pallaghy CK (1976) Z Pflanzenphysiol 78:314

    Article  Google Scholar 

  30. De Filippis LF (1979) Z Pflanzenphysiol 93:129

    Article  Google Scholar 

  31. Bechaieb R, Ben Fredj A, Ben Akacha A, Gérard H (2016) N J Chem 40:4543

    Article  CAS  Google Scholar 

  32. Bechaieb R, Ben Akacha A, Gérard H (2016) Chem Phys Lett 663:27–32

    Article  CAS  Google Scholar 

  33. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian Inc., Wallingford

  34. Becke AD (1993) Phys Chem 98:5648–5652

    CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter Mater Phys 37:785–789

    Article  CAS  Google Scholar 

  36. Becke AD (1988) Phys Rev A At Mol Opt Phys 38:3098–3100

    Article  CAS  Google Scholar 

  37. Scheidt WR, Reed CA (1981) Chem Rev 81:543–555

    Article  CAS  Google Scholar 

  38. Crabtree RH (1988) The organometallic chemistry of the transition metals. John Wiley & Sons, Hoboken

    Google Scholar 

  39. Fredj AB, Lakhdar ZB, Ruiz-López MF (2008) Chem Commun 6:718–720

    Article  Google Scholar 

  40. Ben Fredj A, Ruiz-López MF (2010) J Phys Chem B 114:681

    Article  CAS  Google Scholar 

  41. Ben Fredj A, Ben Lakhdar Z, Ruiz-López MF (2009) Chem Phys Lett 472:243

    Article  CAS  Google Scholar 

  42. Grimme S, Ehrlich S, Goerigk L (2011) J Comp Chem 32:1456

    Article  CAS  Google Scholar 

  43. Orzeł Ł, van Eldik R, Fiedor L, Stochel G (2009) Eur J Inorg Chem 16:2393

    Article  CAS  Google Scholar 

  44. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  45. Grotjohann I, Fromme P (2006) Photosynth Res 85:51

    Article  CAS  Google Scholar 

  46. Dahlbom MG, Reimers R (2005) Mol Phys 103:1057

    Article  CAS  Google Scholar 

  47. Sharma Y, Ganga P, Swapan KP (2011) J Phys Chem A 115:12298

    Article  CAS  Google Scholar 

  48. Mulholland AR, Thordarson P, Mensforth EJ, Langford S (2012) J Org Biomol Chem 10:6045

    Article  CAS  Google Scholar 

  49. Scheer H (éd) (1991) CRC Press, Boca Raton, p 3

  50. Lerner DA, Balaceanu-Stolnici C, Weinberg J, Patron L (2015) Computational Chemistry 3:18–22

    Article  CAS  Google Scholar 

  51. Singh RK, Verma SK, Sharma PD (2011) Int J Chem Tech Res 3:1571–1579

    CAS  Google Scholar 

  52. Vitnik VD, Vitnik ZJ, Banjac NR, Valentic NV, Uscumlic GS, Juranic IO (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 117:42–53

    Article  CAS  Google Scholar 

  53. Prasad MVS, Sri NU, Veeraiah A, Veeraiah V, Chaitanya K (2013) J At Mol Sci 4:1–17

    Google Scholar 

  54. Veinardi S, Sparisoma V (2012) J Sci 44A(2):93–112

    Google Scholar 

  55. Sundholm D (1999) Chem Phys Lett 302:480–484

    Article  CAS  Google Scholar 

  56. Sundholm D (2000) Chem Phys Lett 317:545–552

    Article  CAS  Google Scholar 

  57. Li Kai Yan (2010) Anna Pomogaeva, Feng Long Gu, Yuriko Aoki. Theor Chem Acc 125:511–520

    Article  CAS  Google Scholar 

  58. Marcus Y (1991) J Chem Soc Faraday Trans 87:2995

    Article  CAS  Google Scholar 

  59. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rim Bechaieb.

Additional information

Electronic Supplementary Information (ESI) available: Cartesian coordinates and thermodynamic data for all optimized geometries and TD-DFT simulation. See DOI:10.1039/x0xx00000x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechaieb, R., Lakhdar, Z.B. & Gérard, H. DFT and TD-DFT Studies of Mg-Substitution in Chlorophyll by Cr(II), Fe(II) and Ni(II). Chemistry Africa 1, 79–86 (2018). https://doi.org/10.1007/s42250-018-0003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-018-0003-y

Keywords

Navigation