Skip to main content
Log in

Trimetallic doped hematite (α-Fe2O3) nanoparticles using biomolecules of Azadirachta indica leaf extract for photocatalytic dye removal: insights into catalyst stability and reusability

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The utilization of biomolecules extracted from plants for synthesizing nanoparticles (NPs) has gained considerable attention due to its eco-friendly, cost-effective, and sustainable attributes. In this research, a straightforward and environmentally friendly method was used for manufacturing Cu-Zn-Co trimetallic-doped (TD) α-Fe2O3 NPs. This process involves the use of an aqueous extract derived from Azadirachta indica leaves, serving both as capping and stabilizing agents during the NPs synthesis. The incorporation of distinct metal precursors in the preparation of TD α-Fe2O3 NPs leads to remarkable changes in their physicochemical properties. These NPs exhibit superior characteristics compared to their monometallic counterparts in various aspects and carried out comprehensive characterization using techniques such as powder XRD, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, SEM, EDX, TEM, SAED, and VSM techniques. XRD analysis revealed that the TD α-Fe2O3 NPs within encapsulation exhibit a rhombohedral crystal lattice structure, with a crystalline diameter size of 16.2 nm. These TD α-Fe2O3 NPs display an average particle size of 15.4 nm, demonstrating spheroidal morphology. The band gap of the TD α-Fe2O3 NPs is measured to be within the range of 2.44 eV. The biologically synthesized TD α-Fe2O3 NPs exhibited significant photocatalytic activity in the degradation of dyes like Rhodamine Blue (RhB), Malachite Green (MG), Bismarck Brown (BB), and Fluorescein Sodium (FS). This activity was evaluated in terms of percentage degradation, degradation efficiency, reusability, and the influence of pH, of the dyes RhB, MG, BB, and FS through photocatalysis can be characterized as adhering to pseudo-first-order kinetics. Additionally, we delved into the mechanism of photodegradation involving the green synthesized TD α-Fe2O3 NPs. This research illuminates the potential of these NPs as efficient photocatalysts for the degradation of various dyes and contributes to our understanding of their application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. P. Chowdhary, R.N. Bharagava, S. Mishra, N. Khan, Role of industries in water scarcity and its adverse effects on the environment and human health. Environ. Concerns Sustainable Development: Air Water Energy Resour. 1, 235–256 (2020). https://doi.org/10.1007/978-981-13-5889-0_12

    Article  Google Scholar 

  2. I.C. Vasilachi, D.M. Asiminicesei, D.I. Fertu, M. Gavrilescu, Occurrence and fate of emerging pollutants in water environment and options for their removal. Water. 13, 181 (2021). https://www.mdpi.com/2073-4441/13/2/181#

    Article  CAS  Google Scholar 

  3. H. Liu, N. Lyczko, A. Nzihou, C. Eskicioglu, Incorporating hydrothermal liquefaction into wastewater treatment–part II: characterization, environmental impacts, and potential applications of hydrochar. J. Clean. Prod. 383, 135398 (2023). https://doi.org/10.1016/j.jclepro.2022.135398

    Article  CAS  Google Scholar 

  4. A.M. Elgarahy, A. Maged, M.G. Eloffy, M. Zahran, S. Kharbish, K.Z. Elwakeel, A. Bhatnagar, Geopolymers as sustainable eco-friendly materials: classification, synthesis routes, and applications in wastewater treatment. Sep. Purif. Technol. 124631 (2023). https://doi.org/10.1016/j.seppur.2023.124631

  5. N. Goodarzi, Z. Ashrafi-Peyman, E. Khani, A.Z. Moshfegh, Recent progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation. Catalysts. 13, 1102 (2023). https://www.mdpi.com/2073-4344/13/7/1102#

    Article  CAS  Google Scholar 

  6. R. Gaur, (2023) Transition Metal Chalcogenides-Based Nanocomposite for the Photocatalytic Degradation of Hazardous Chemicals. In Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials: Application on Health, Energy and Environment. Cham: Springer International Publishing 239–274. https://doi.org/10.1007/978-3-031-39481-2_11

  7. P. Qiu, J. Zhu, C. Zhang, T. Liu, H. Fang, L. Shen, S. Zhang, Visible light-supported efficient photocatalytic disinfection using a robust silver-doped boron photocatalyst. J. Environ. Chem. Eng. 111058 (2023). https://doi.org/10.1016/j.jece.2023.111058

  8. W. Guo, T. Guo, Y. Zhang, L. Yin, Y. Dai, (2023) Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy: a review. Chemosphere 139486. https://doi.org/10.1016/j.chemosphere.2023.139486

  9. Y. Bashir, R. Raj, M.M. Ghangrekar, A.K. Nema, S. Das, Critical Assessment of Advanced oxidation processes and Bio-electrochemical Integrated Systems for remediating emerging contaminants from Wastewater. RSC Sustain. (2023). https://doi.org/10.1039/D3SU00112A

  10. S. Chihi, A. Bouafia, S. Meneceur, S.E. Laouini, R.Z. Ahmed, Effect of precursor concentration on the bandgap energy and particles size for green synthesis of hematite α-Fe2O3 nanoparticles by the aqueous extract of Moltkia ciliata and evaluation of the antibacterial activity. Biomass Convers. Biorefinery. 1–14 (2023). https://doi.org/10.1007/s13399-023-04739-z

  11. J.E. Ogbezode, U.S. Ezealigo, A. Bello, V.C. Anye, A.P. Onwualu, A narrative review of the synthesis, characterization, and applications of iron oxide nanoparticles. Discover Nano. 18, 125 (2023). https://doi.org/10.1186/s11671-023-03898-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. I. Sharma, P. Kumar, Synthesis and characterization of Mn-Zn soft ferrite nanoparticle of [Gd. Sup. 3+] doped. Eur. J. Mol. Clin. Med. 8, 1–10 (2021)

    Google Scholar 

  13. X. Chen, J. Lin, Q. Lin, R. Li, H. He, (2023) Square-Octagon structure of a BCN monolayer: Near-Zero Poisson’s ratio, high Carrier mobility, and excellent photocatalytic activity for overall water splitting. ACS Applied Electronic Materials. https://doi.org/10.1021/acsaelm.3c00280

  14. A. Chowdhury, S. Balu, T.C.K. Yang, Construction of α-Fe2O3-NPs@ AgVO3-NRs Z-scheme heterojunction: an efficient photo (electro) catalyst for cr (VI) reduction and oxygen evolution reactions under visible-light. J Environ Chem Eng 11, 109769 (2023). https://doi.org/10.1016/j.jece.2023.109769

    Article  CAS  Google Scholar 

  15. R. Jasrotia, J. Prakash, N. Thakur, K. Raj, A. Kandwal, P. Sharma, Advancements in doping strategies for enhancing applications of M-type hexaferrites: a comprehensive review. Prog. Solid State Chem. 100427 (2023). https://doi.org/10.1016/j.progsolidstchem.2023.100427

  16. N. Thakur, P. Kumar, N. Thakur, K. Kumar, A. Tapwal, P. Sharma, A review of new developments in the synthesis of CuO nanoparticles via plant extracts for enhancing the photocatalytic activity. Biomaterials Polym. Horizon. 1 (2022). https://doi.org/10.37819/bph.1.331

  17. P. Kumar, N. Thakur, K. Kumar, K. Jeet, (2023) Photodegradation of methyl orange dye by using Azadirachta indica and chemically mediated synthesized cobalt doped α-Fe2O3 NPs through co-precipitation method. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.01.257

  18. P. Kumar, N. Kumar, Azadirachta indica and polyvinylpyrrolidone encapsulated Fe2O3 nanoparticles to enhance the photocatalytic and antioxidant activity. Inorg Chem Commun 155, 111084 (2023). https://doi.org/10.1016/j.inoche.2023.111084

    Article  CAS  Google Scholar 

  19. M. Aalim, U. Altaf, A. Rashid, R. Ahmad, A. Sohail, A. Mir, M.A. Shah, Tin (Sn)-doped hematite (α-SnxFe2-xO3) nanostructures as high-performance electrodes for supercapacitor application. J. Solid-State Electrochem. 1–18 (2023). https://doi.org/10.1007/s10008-023-05651-2

  20. P. Kumar, N. Thakur, A. Tapwal, S. Kumar, (2023) Enhancing the adsorption capacity of green/chemical synthesized hematite nanoparticles by copper doping: removal of toxic Congo red dye and antioxidant activity. Applied Nanoscience 1–14. https://doi.org/10.1007/s13204-023-02943-x

  21. X.S. Xing, X. Zeng, Z. Zhou, X. Song, X. Jing, M. Yuan, C. Xu, C. Xu, J. Du, Regulating a Zn/Co bimetallic catalyst in a metal–organic framework and oxyhydroxide for improved photoelectrochemical water oxidation. Dalton Trans 52, 11203–11212 (2023). https://doi.org/10.1039/D3DT01198D

    Article  CAS  PubMed  Google Scholar 

  22. N. Dhariwal, M. Chahar, V. Kumar, O.P. Thakur, Ethanol sensing materials and device using Co2+, Zn2+, Cr2 + doped α-Fe2O3 nano-particles with room temperature response/recovery. Sens. Actuators B 134037 (2023). https://doi.org/10.1016/j.snb.2023.134037

  23. S. Navinraj, N.M. Boopathi, V. Balasubramani, S. Nakkeeran, R. Raghu, R. Gnanam, N. Saranya, V.P. Santhanakrishnan, Molecular docking of Nimbolide extracted from leaves of Azadirachta indica with protein targets to confirm the Antifungal, Antibacterial and Insecticidal Activity. Indian J. Microbiol. 1–19 (2023). https://doi.org/10.1007/s12088-023-01104-6

  24. A. Wahab, F. Batool, M. Muhammad, W. Zaman, R.M. Mikhlef, M. Naeem, Current knowledge, Research Progress, and future prospects of Phyto-synthesized nanoparticles interactions with food crops under Induced Drought stress. Sustainability. 15, 14792 (2023). https://www.mdpi.com/2071-1050/15/20/14792#

    Article  CAS  Google Scholar 

  25. M.S. Aida, N. Alonizan, B. Zarrad, M. Hjiri, Green synthesis of iron oxide nanoparticles using Hibiscus plant extract. J. Taibah Univ. Sci. 17, 2221827 (2023). https://doi.org/10.1080/16583655.2023.2221827

    Article  Google Scholar 

  26. H. Sridevi, M.R. Bhat, P.S. Kumar, N.M. Kumar, R. Selvaraj, Structural characterization of cuboidal α-Fe2O3 nanoparticles synthesized by a facile approach. Appl. Nanosci. 1–9 (2023). https://doi.org/10.1080/16583655.2023.2221827

  27. K. Murugan, R. Subashini, U. Sathiskumar, G. Odukkathil, Calotropis procera flower extract for the synthesis of double edged octahedral α-Fe2O3 nanoparticles via a greener approach: an insight into its structure property relationship for Escherichia coli. New J. Chem. (2023). https://doi.org/10.1039/D3NJ01044A

    Article  Google Scholar 

  28. S.Z. Alshawwa, E.J. Mohammed, N. Hashim, M. Sharaf, S. Selim, H.M. Alhuthali, H.A. Alzahrani, A.E. Mekky, M.G. Elharrif, (2022) In Situ biosynthesis of reduced alpha hematite (α-Fe2O3) nanoparticles by Stevia Rebaudiana L. leaf extract: Insights into antioxidant, antimicrobial, and anticancer properties. Antibiotics, 11:1252. https://www.mdpi.com/2079-6382/11/9/1252#

  29. G. Dong, B. Chen, B. Liu, L.J. Hounjet, Y. Cao, S.R. Stoyanov, M. Yang, B. Zhang, Advanced oxidation processes in microreactors for water and wastewater treatment: development, challenges, and opportunities. Water Res. 211, 118047 (2022). https://doi.org/10.1016/j.watres.2022.118047

    Article  CAS  PubMed  Google Scholar 

  30. S. Rehman, F. Ahmed, M.U.A. Khan, S. Aljaafari, S. Manickam, P.L. Show, Show, Morphological evaluation of hematite nanostructures and their shape dependent photocatalytic and magnetic properties. Chem Eng Processing-Process Intensif 175, 108909 (2022). https://doi.org/10.1016/j.cep.2022.108909

    Article  CAS  Google Scholar 

  31. A. Bouziani, M. Yahya, Y. Naciri, A. Hsini, M.A. Khan, M. Sillanpää, G. Celik, Development of polyaniline coated titania-hematite composite with enhanced photocatalytic activity under sun-like irradiation. Surf. Interfaces. 34, 102328 (2022). https://doi.org/10.1016/j.surfin.2022.102328

    Article  CAS  Google Scholar 

  32. D.G. Sayed, F.I. El-Hosiny, S.M.A. El-Gamal, M.M. Hazem, M. Ramadan, Synergetic impacts of mesoporous α-Fe2O3 nanoparticles on the performance of alkali-activated slag against fire, gamma rays, and some microorganisms. J Building Eng 57, 104947 (2022). https://doi.org/10.1016/j.jobe.2022.104947

    Article  Google Scholar 

  33. A. Mallah, F. Al-Thuwayb, M. Khitouni, A. Alsawi, J.J. Suñol, J.M. Greneche, M.M. Almoneef, Synthesis, structural and magnetic characterization of superparamagnetic Ni0.3Zn0.7Cr2 – xFexO4 oxides obtained by Sol-Gel Method. Crystals. 13, 894 (2023). https://www.mdpi.com/2073-4352/13/6/894#

    Article  CAS  Google Scholar 

  34. S. Navalón, A. Dhakshinamoorthy, M. Álvaro, B. Ferrer, H. García, Metal–organic frameworks as photocatalysts for solar-driven overall water splitting. Chem. Rev. 123, 445–490 (2022). https://doi.org/10.1021/acs.chemrev.2c00460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. M. Glöß, R. Pütt, M. Moors, E. Kentzinger, S. Karthäuser, K.Y. Monakhov, Exploring the Ligand Functionality, Electronic Band Gaps, and Switching Characteristics of Single Wells–Dawson‐Type Polyoxometalates on Gold. Adv Mater Interfaces 9, 2200461 (2022). https://doi.org/10.1002/admi.202200461

    Article  CAS  Google Scholar 

  36. T. Defferriere, D. Klotz, J.C. Gonzalez-Rosillo, J.L. Rupp, H.L. Tuller, Photo-enhanced ionic conductivity across grain boundaries in polycrystalline ceramics. Nat. Mater. 21, 438–444 (2022). https://doi.org/10.1038/s41563-021-01181-2

    Article  CAS  PubMed  Google Scholar 

  37. P.S. Sundara Selvam, S. Govindan, B. Perumal, V. Kandan, Screening of in Vitro Antibacterial Property of Hematite (α-Fe2O3) nanoparticles: a Green Approach. Iran. J. Sci. Technol. Trans. A: Sci. 45, 177–187 (2021). https://doi.org/10.1007/s40995-020-00995-0

    Article  Google Scholar 

  38. T. Sarkar, S. Kundu, G. Ghorai, P.K. Sahoo, V.R. Reddy, A. Bhattacharjee, Structure, optical, magnetic, morphology and dielectric studies of pristine and green synthesized hematite nanoparticles. Appl. Phys. A 130(2), 123 (2024). https://doi.org/10.1007/s00339-023-07228-2

    Article  CAS  Google Scholar 

  39. I. Sadiek, A. Hjältén, F.C. Roberts, J.H. Lehman, A. Foltynowicz, Optical frequency comb-based measurements and the revisited assignment of high-resolution spectra of CH2Br2 in the 2960 to 3120 cm– 1 regions. Phys. Chem. Chem. Phys. 25, 8743–8754 (2023). https://doi.org/10.1039/D2CP05881B

    Article  CAS  PubMed  Google Scholar 

  40. S. Christaki, R. Kelesidou, V. Pargana, E. Tzimopoulou, M. Hatzikamari, I. Mourtzinos, Inclusion complexes of β-Cyclodextrin with Salvia officinalis Bioactive compounds and their antibacterial activities. Plants. 12, 2518 (2023). https://www.mdpi.com/2223-7747/12/13/2518#

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. L. Yang, Z. Mi, H. Fang, R. Xu, B. Lv, J. Li, G. Zhang, (2023) Preparation of Highly Catalytic Active Α-Fe2O3-Carbon Nanotube Composites Using Fe (Co) 5 Precursor with Light and Temperature Control Strategy and Their Performance on the Thermal Decomposition of Ammonium Perchlorate. Available at SSRN 4521732. https://doi.org/10.2139/ssrn.4521732

  42. J. Wei, D. Xia, Y. Wei, X. Zhu, J. Li, L. Gan, Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe–N–C electrocatalysts by in situ Raman spectroscopy. ACS Catal. 12, 7811–7820 (2022). https://doi.org/10.1021/acscatal.2c00771

    Article  CAS  Google Scholar 

  43. M.F. Elmahaishi, I. Ismail, F.D. Muhammad, A review on electromagnetic microwave absorption properties: their materials and performance. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.07.140

    Article  Google Scholar 

  44. N. Chakraborty, D. Jha, I. Roy, P. Kumar, S.S. Gaurav, K. Marimuthu, O.T. Ng, R. Lakshminarayanan, N.K. Verma, H.K. Gautam, Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J. Nanobiotechnol. 20, 375 (2022). https://doi.org/10.1186/s12951-022-01573-9

    Article  CAS  Google Scholar 

  45. L.T. Quispe, L.L. Mamani, A.A. Baldárrago-Alcántara, L.L. Félix, G.F. Goya, J.A. Fuentes-García, D.G. Pacheco-Salazar, J.A. Coaquira, Synthesis and characterization of α-Fe2O3 nanoparticles showing potential applications for sensing quaternary ammonium vapor at room temperature. Nanotechnology. 33, 335704 (2022).

    Article  CAS  Google Scholar 

  46. M. Tadic, M. Panjan, B.V. Tadic, S. Kralj, J. Lazovic, Magnetic properties of mesoporous hematite/alumina nanocomposite and evaluation for biomedical applications. Ceram. Int. 48, 10004–10014 (2022). https://doi.org/10.1016/j.ceramint.2021.12.209

    Article  CAS  Google Scholar 

  47. H. Maulidina, R. Arilasita, H. Widiyandari, B. Purnama, Citric acid concentration tune of structural and magnetic properties in hematite (α – Fe2O3) nanoparticles synthesized by sol – gel method. Mater Res Express 10, 036101 (2023). https://doi.org/10.1088/2053-1591/acbf0c

    Article  Google Scholar 

  48. M. Tahir, M. Fakhar-e-Alam, M. Atif, G. Mustafa, Z. Ali, Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method. J. King Saud University-Science. 35, 102695 (2023). https://doi.org/10.1016/j.jksus.2023.102695

    Article  Google Scholar 

  49. N. Thakur, N. Thakur, Removal of organic dyes and free radical assay by encapsulating polyvinylpyrrolidone and Tinospora Cordifolia in dual (Co–Cu) doped TiO2 nanoparticles. Environ. Pollut. 335, 122229 (2023). https://doi.org/10.1016/j.envpol.2023.122229

    Article  CAS  PubMed  Google Scholar 

  50. N. Thakur, A. Kumar, N. Thakur, Tinospora cordifolia and polyvinylpyrrolidone encapsulated dual doped Ni-Cu TiO2 emerging nanocatalyst for the removal of organic dyes from wastewater and its free radical assay activity. Hybrid. Adv. 4, 100086 (2023). https://doi.org/10.1016/j.hybadv.2023.100086

    Article  Google Scholar 

  51. P.V. Gayathri, M.P. Rayaroth, C.T. Aravindakumar, D. Pillai, S. Joseph, SUNLIGHT-INDUCED decontamination of water from emerging pharmaceutical pollutants using ZnO nanoparticles. Chemosphere. 140265 (2023). https://doi.org/10.1016/j.chemosphere.2023.140265

  52. N. Thakur, P. Kumar, A. Tapwal, K. Jeet, Degradation of malachite green dye by capping polyvinylpyrrolidone and Azadirachta indica in hematite phase of Ni doped Fe2O3 nanoparticles via co-precipitation method. Nanofabrication. 8 (2023). https://doi.org/10.37819/nanofab.008.304

  53. S. Taghavi Fardood, F. Moradnia, M. Moradnia, Z. Mostafaei, F. Afshari, V. Faramarzi, S. Ganjkhanlu, Biosynthesis of MgFe2O4 magnetic nanoparticles and their application in photodegradation of malachite green dye and kinetic study. Nanochem Res 4, 86–93 (2019). https://doi.org/10.22036/ncr.2019.01.010

    Article  CAS  Google Scholar 

  54. V. Manikandan, P. Anushkkaran, I.S. Hwang, M.S. Song, M. Kumar, W.S. Chae, H.H. Lee, J. Ryu, M.A. Mahadik, J.S. Jang, (2023) Influence of CoOx surface passivation and Sn/Zr-co-doping on the photocatalytic activity of Fe2O3 nanorod photocatalysts for bacterial inactivation and photo-Fenton degradation. Chemosphere 139255. https://doi.org/10.1016/j.chemosphere.2023.139255

  55. S. Devi, S. Chahal, S. Singh, P. Kumar, S. Kumar, A. Kumar, V. Kumar, Magnetic Fe2O3/CNT nanocomposites: characterization and photocatalytic application towards the degradation of Rose Bengal Dye. Ceram. Int. 49, 20071–20079 (2023). https://doi.org/10.1016/j.ceramint.2023.03.130

    Article  CAS  Google Scholar 

  56. A. Alharbi, E.A. Abdelrahman, Efficient photocatalytic degradation of malachite green dye using facilely synthesized hematite nanoparticles from Egyptian insecticide cans. Spectrochimica Acta Part A Mol biomol spectrosc 226, 117612 (2020). https://doi.org/10.1016/j.saa.2019.117612

    Article  CAS  Google Scholar 

  57. M. Karimi, M.B. Lejbini, V. Jahangir, A.S. Jam, S.M. Asl, Amorphous and nanocrystalline hematite photocatalysts synthesized in ferric chloride-choline chloride acting as a green and reactive synthesis medium. Optik. 181, 816–822 (2019). https://doi.org/10.1016/j.ijleo.2018.12.109

  58. P. Kumar, S. Kumar, A. Tapwal, N. Thakur, Chemical/green synthesized cobalt/copper-doped α-Fe2O3 nanoparticles: potential for environmental remediation. J. Mater. Res. 1–14 (2024). https://doi.org/10.1557/s43578-023-01274-5

  59. A. Mantilla, J.E. Samaniego-Benitez, D. Ramirez-Ortega, F. Tzompantzi, L. Lartundo-Rojas, H.A. Calderon, G. Romero-Ortiz, ZnAl/ZnSn (OH) composite photocatalyst for emerging contaminants degradation in water. J. Environ. Chem. Eng. 111098 (2023). https://doi.org/10.1016/j.jece.2023.111098

  60. P. Eskandari, E. Amarloo, H. Zangeneh, M. Rezakazemi, M.R. Zamani, T.M. Aminabhavi, Photocatalytic activity of visible-light-driven L-Proline-TiO2/BiOBr nanostructured materials for dyes degradation: The role of generated reactive species. J Environ Manag 326, 116691 (2023). https://doi.org/10.1016/j.jenvman.2022.116691

    Article  CAS  Google Scholar 

  61. J. Hu, H. Zou, F. Li, S. Wei, M. Cheng, H. Dai, T. Song, L. Duan, Review on Electrochemical Reduction of Nitrogen by Graphdiyne-Based Catalysts: Recent Advances and Outlook. Energy Fuels 37, 3501–3522 (2023). https://doi.org/10.1021/acs.energyfuels.2c04028

    Article  CAS  Google Scholar 

  62. L. Wang, T. Chen, Y. Cui, J. Wu, X. Zhou, M. Xu, Z. Liu, W. Mao, X. Zeng, W. Shen, C. Liu, Rational design of environmentally friendly Carbon Nanotube embedded Artificial Vesicle-Structured Photocatalysts for Organic pollutants Degradation. Adv. Funct. Mater. 2313653 (2024). https://doi.org/10.1002/adfm.202313653

  63. A. Rasool, S. Kiran, T. Gulzar, S. Abrar, A. Ghaffar, M. Shahid, S. Nosheen, S. Naz, Biogenic synthesis and characterization of ZnO nanoparticles for degradation of synthetic dyes: a sustainable environmental cleaner approach. J. Clean. Prod. 398, 136616 (2023). https://doi.org/10.1016/j.jclepro.2023.136616

  64. M. Islam, S. Kumar, N. Saxena, A. Nafees, Photocatalytic degradation of dyes Present in Industrial Effluents. Rev. ChemistrySelect. 8, 202301048 (2023). https://doi.org/10.1002/slct.202301048

    Article  CAS  Google Scholar 

  65. J. Li, Z. You, B. Zheng, S. Zhai, K. Lu, (2023) Au–ZnO nanomatches as Radiosensitizers with Improved reactive oxygen Species Generation and Tumor Hypoxia Modulation for enhanced Radiotherapy on Triple-negative breast Cancer. ACS Applied Nano Materials. https://doi.org/10.1021/acsanm.3c02519

  66. N. Thakur, P. Kumar, Effect of shape and size on synthesized triple (Co/Ni/Zn) doped α-Fe2O3 nanoparticles on their photocatalytic and scavenging properties. Int. J. Nanosci. (2024). https://doi.org/10.1142/S0219581X24500108

  67. P. Kumar, N. Thakur, K. Kumar, S. Kumar, A. Dutt, V.K. Thakur, C. Gutiérrez-Rodelo, P. Thakur, A. Navarrete, N. Thakur, Catalyzing innovation: Exploring iron oxide nanoparticles-Origins, advancements, and future application horizons. Coord Chem Rev 507, 215750 (2024). https://doi.org/10.1016/j.ccr.2024.215750

    Article  CAS  Google Scholar 

  68. I. Som, S. Biswas, S. Dey, R. Saha, A mesoporous CuO/CuSe heterojunction nanocomposite with applications in visible-light photocatalysis and as an Electrochemical Phenol Sensor. Chemistry Sel 8, 202301253 (2023). https://doi.org/10.1002/slct.202301253

    Article  CAS  Google Scholar 

  69. Roy H, T.U. Rahman, M.A.J.R. Khan, M.R. Al-Mamun, S.Z. Islam, M.A. Khaleque, M.I. Hossain, M.Z.H. Khan, M.S. Islam, H.M. Marwani, A. Islam, Toxic dye removal, remediation, and mechanism with doped SnO2-based nanocomposite photocatalysts: A critical review. J Water Process Eng 54, 104069 (2023). https://doi.org/10.1016/j.jwpe.2023.104069

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Thakur.

Ethics declarations

Ethical approval

Not required.

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Pathak, D. & Thakur, N. Trimetallic doped hematite (α-Fe2O3) nanoparticles using biomolecules of Azadirachta indica leaf extract for photocatalytic dye removal: insights into catalyst stability and reusability. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00742-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00742-w

Keywords

Navigation