Skip to main content
Log in

Limitations and trends on cobalt-free cathode materials development for intermediate-temperature solid oxide fuel cell- an updated technical review

  • Review Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Intermediate-temperature solid oxide fuel cell (IT-SOFC) work at moderate temperature range (600—800 ℃), thereby eliminating the issue of thermal degradation of electrode materials, reduce operational cost, increase flexibility of material selections, and enhance electrochemical stability of cell components. At intermediate-temperature range, there exists sluggish cathodic reaction, high activation energy and slow oxygen reduction reaction (ORR) at the cathode. Several cobalt-containing cathode perovskite materials with mixed ionic and electronic properties have been developed, which has helped in resolving sluggish ORR and enhances cathodic reaction, thereby increasing the overall performance of IT-SOFC. The expensive nature of cobalt, high evaporation rate and poor thermal expansion coefficient (TEC) means cobalt-free cathode materials need to be investigated. The present study gives an insight into the current trends of cobalt-free cathode materials development in IT-SOFC. Literature reviewed showed composite La0.65Ca0.35FeO3-δ-Gd0.2Ce0.8O2-δ (LCF-GDC), and La0.7Sr0.3Cu0.15Fe0.85O3-δ cathode materials has good polarisation resistance of 0.28 Ωcm2 at 750 ℃, and 0.0153 Ωcm2 at 700 ℃, respectively. Limitations, challenges, gaps were identified, and possible future research direction was recommended. The study also analysed the use of symmetrical electrodes, as it will help resolve the complexity of developing different electrode materials for cathode and anode in IT-SOFC. Holistic efforts were devoted to ensuring that the literature reviewed was recent (within the last 4yrs), and relevant to the current constraints impeding cathode materials use in IT-SOFC. This review study is meant to serve as a reference material to related researchers, and industry experts looking for the most recent accomplishments in cobalt-free cathode materials development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data and materials that have been used are embedded in the body of the manuscript.

Code availability

Not applicable.

References

  1. S. Seyam, I. Dincer, M. Agelin-Chaab, Investigation of a hybridized combined cycle engine with SOFC system for marine applications. J. Therm. Anal. Calorim. 148, 8323–8344 (2023). https://doi.org/10.1007/s10973-022-11765-y

    Article  CAS  Google Scholar 

  2. Md.M. Rahman, A.M. Abdalla, L.A. Omeiza, V. Raj, S. Afroze, Md.S. Reza et al., Numerical Modeling of Ammonia-Fueled Protonic-Ion Conducting Electrolyte-Supported Solid Oxide Fuel Cell (H-SOFC): A Brief Review. Processes 11, 2728 (2023)

    Article  CAS  Google Scholar 

  3. T. Chen, Y. Xie, Z. Lu, L. Wang, Z. Chen, X. Zhong et al., La0.75Sr0.25Cr0.5Mn0.5O3−δ-Ce0.8Gd0.2O1.9 composite electrodes as anodes in LaGaO3-based direct carbon solid oxide fuel cells. J Cent South Univ 29, 1788–98 (2022). https://doi.org/10.1007/s11771-022-5045-2

    Article  CAS  Google Scholar 

  4. Li Y, Yu S, Dai H, Xu Y, Bi L. TiO2-induced electronic change in traditional La0.5Sr0.5MnO3−δ cathode allows high performance of proton-conducting solid oxide fuel cells. Sci. China Mater. (2023). https://doi.org/10.1007/s40843-023-2519-9.

  5. Mandal R, Behera SK, Pratihar SK. Effect of oxygen nonstoichiometry on electrical conductivity and oxygen transport parameters of Cu-substituted La0.5Sr0.5Co0.8Fe0.2O3-δ perovskite oxides. J. Solid State Electrochem. (2023). https://doi.org/10.1007/s10008-023-05578-8.

  6. S. Amira, M. Ferkhi, F. Mauvy, S. Fourcade, J.M. Bassat, J.C. Grenier, A La1.5Nd0.3Pr0.2NiO4.16: A New Cathode Material for IT-Solid Oxide Fuel Cells. Electrocatalysis 14, 546–60 (2023). https://doi.org/10.1007/s12678-023-00818-x

    Article  CAS  Google Scholar 

  7. A.P. Khandale, R.V. Kumar, S.S. Bhoga, Effect of synthesis route on electrochemical performance of PrBaCo2O5+δ cathode for IT-SOFC application. Bull. Mater. Sci. 46, 119 (2023). https://doi.org/10.1007/s12034-023-02949-9

    Article  CAS  Google Scholar 

  8. M. Kiani, M.H. Paydar, SrCo0.8Fe0.1Ga0.1O3−δ (SCFG) cathodes incorporated with Sm0.2Ce0.8O1.9 (SDC) for IT-SOFCs application. J Mater Sci Mater Electr 34, 1366 (2023). https://doi.org/10.1007/s10854-023-10773-4

    Article  CAS  Google Scholar 

  9. D. Sikstrom, A. Javed, S. Muhammad, V. Thangadurai, Perovskite-type Nd0.75Ba0.25Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells. Ionics (Kiel) 29, 1507–14 (2023). https://doi.org/10.1007/s11581-023-04901-7

    Article  CAS  Google Scholar 

  10. L.A. Omeiza, A.M. Abdalla, B. Wei, A. Dhanasekaran, Y. Subramanian, S. Afroze et al., Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies (Basel) 16, 1876 (2023). https://doi.org/10.3390/en16041876

    Article  CAS  Google Scholar 

  11. H.S. Yoo, S. Ju Kim, Y.T. Megra, J. Lee, J.W. Suk, W. Lee, Interface engineering to improve electrochemical performance of intermediate-temperature solid oxide fuel cells. Appl. Surf. Sci. 639, 158188 (2023). https://doi.org/10.1016/j.apsusc.2023.158188

    Article  CAS  Google Scholar 

  12. C. Ampelli, F. Tavella, D. Giusi, A.M. Ronsisvalle, S. Perathoner, G. Centi, Electrode and cell design for CO2 reduction: A viewpoint. Catal. Today 421, 114217 (2023). https://doi.org/10.1016/j.cattod.2023.114217

    Article  CAS  Google Scholar 

  13. Fu S, Ye L. Global self-optimizing control of a solid oxide fuel cell. 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), (IEEE; 2023) 1865–70. https://doi.org/10.1109/DDCLS58216.2023.10166897.

  14. A.P. Panunzi, L. Duranti, I. Luisetto, N. Lisi, M. Marelli, E. Di Bartolomeo, Triggering electrode multi-catalytic activity for reversible symmetric solid oxide cells by Pt-doping lanthanum strontium ferrite. Chem. Eng. J. 471, 144448 (2023). https://doi.org/10.1016/j.cej.2023.144448

    Article  CAS  Google Scholar 

  15. M. Geofrey Sahini, L.S. Daud, Perspective and control of cation interdiffusion and interface reactions in solid oxide fuel cells (SOFCs). Mater. Sci. Eng., B 292, 116415 (2023). https://doi.org/10.1016/j.mseb.2023.116415

    Article  CAS  Google Scholar 

  16. A.M. Mehdi, A. Hussain, R.H. Song, T.-H. Lim, W.W. Kazmi, H.A. Ishfaq et al., Improving the durability of cobaltite cathode of solid oxide fuel cells – a review. RSC Adv. 13, 25029–25053 (2023). https://doi.org/10.1039/D3RA02571C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Zhang, D. Huan, K. Zhu, P. Dai, R. Peng, C. Xia, Tuning the Phase Transition of SrFeO 3−δ by Mn toward Enhanced Catalytic Activity and CO 2 Resistance for the Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 14, 17358–17368 (2022). https://doi.org/10.1021/acsami.2c01339

    Article  CAS  PubMed  Google Scholar 

  18. M.L. Tummino, SrFeO3 peculiarities and exploitation in decontamination processes and environmentally-friendly energy applications. Curr Res Green Sustain Chem 5, 100339 (2022). https://doi.org/10.1016/j.crgsc.2022.100339

    Article  CAS  Google Scholar 

  19. E.K. Abdel-Khalek, M.A. Motawea, M.A. Aboelnasr, H.H. El-Bahnasawy, Study the oxygen vacancies and Fe oxidation states in CaFeO3-δ perovskite nanomaterial. Physica B Condens Matter 624, 413415 (2022). https://doi.org/10.1016/j.physb.2021.413415

    Article  CAS  Google Scholar 

  20. M.G. Sahini, B.S. Mwankemwa, N. Kanas, BaxSr1-xCoyFe1-yO3-δ (BSCF) mixed ionic-electronic conducting (MIEC) materials for oxygen separation membrane and SOFC applications: Insights into processing, stability, and functional properties. Ceram. Int. 48, 2948–2964 (2022). https://doi.org/10.1016/j.ceramint.2021.10.189

    Article  CAS  Google Scholar 

  21. A. Ndubuisi, S. Abouali, K. Singh, V. Thangadurai, Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes. J Mater Chem A Mater 10, 2196–2227 (2022). https://doi.org/10.1039/D1TA08475E

    Article  CAS  Google Scholar 

  22. D. Liu, Y. Dou, T. Xia, Q. Li, L. Sun, L. Huo et al., B-site La, Ce, and Pr-doped Ba0.5Sr0.5Co0.7Fe0.3O3- perovskite cathodes for intermediate-temperature solid oxide fuel cells: Effectively promoted oxygen reduction activity and operating stability. J Power Sources 494, 229778 (2021). https://doi.org/10.1016/j.jpowsour.2021.229778

    Article  CAS  Google Scholar 

  23. I. Jang, J. Kwon, C. Kim, H. Lee, S. Kim, H. Yoon et al., Boosted Oxygen Reduction Reaction Activity by Ordering Cations in the A-Site of a Perovskite Catalyst. ACS Sustain Chem Eng 11, 4623–4632 (2023). https://doi.org/10.1021/acssuschemeng.2c06381

    Article  CAS  Google Scholar 

  24. H. Wang, J. Xu, Z. Song, X. Su, D. Wu, L. Zhang, Characterisation of Bi doped YBaCo<SUB align="right">2O<SUB align="right">5+δ layered perovskite oxide as a cathode for Intermediate-temperature solid oxide fuel cell. Int. J. Comput. Mater. Sci. Surf. Eng. 10, 88 (2021). https://doi.org/10.1504/IJCMSSE.2021.118499

    Article  CAS  Google Scholar 

  25. J. Teng, T. Xia, Q. Li, L. Sun, H. Zhao, Advanced electrocatalytic activity of praseodymium-deficient copper-based oxygen electrodes for solid oxide fuel cells. Int. J. Hydrogen Energy 48, 27361–27370 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.390

    Article  CAS  Google Scholar 

  26. Qian B, Wang S, Zheng Y, Yin B, He S, Chen H, et al. Cobalt-free double-perovskite oxide Sr2Ti0.9FeNi0.1O6 as a promising electrode for symmetric solid oxide electrolysis cells. J. Eur. Ceram. Soc. (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.08.006.

  27. M. Wu, H. Cai, F. Jin, N. Sun, J. Xu, L. Zhang et al., Assessment of cobalt–free ferrite–based perovskite Ln0.5Sr0.5Fe0.9Mo0.1O3–δ (Ln = lanthanide) as cathodes for IT-SOFCs. J Eur Ceram Soc 41, 2682–90 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.11.035

    Article  CAS  Google Scholar 

  28. M. Hussain, M. Muneer, R. Raza, M.A. Jamal, M.K. Khosa, Evaluation of La x Sr 1− x Zn y Fe 1− y O 3− δ ( x = 0.54, 0.8, y = 0.2, 0.4) as a promising cobalt free composite cathode for SOFCs. New J Chem 46, 21695–703 (2022). https://doi.org/10.1039/D2NJ04295A

    Article  CAS  Google Scholar 

  29. S. Akkurt, C. Sindirac, T. Özmenegesoy, E. Ergen, A review on new cobalt-free cathode materials for reversible solid oxide fuel cells. J Metals, Mater Min 33, 1654 (2023). https://doi.org/10.55713/jmmm.v33i3.1654

    Article  CAS  Google Scholar 

  30. P. Kaur, K. Singh, Perovskite-structured cobalt-free cathode materials for solid oxide fuel cells, in Recent Advances in Renewable Energy Technologies. (Elsevier, 2022), pp.357–73. https://doi.org/10.1016/B978-0-12-823532-4.00009-4

    Chapter  Google Scholar 

  31. N.A. Baharuddin, A. Muchtar, M.R. Somalu, Short review on cobalt-free cathodes for solid oxide fuel cells. Int. J. Hydrogen Energy 42, 9149–9155 (2017). https://doi.org/10.1016/j.ijhydene.2016.04.097

    Article  CAS  Google Scholar 

  32. M.A. Morales-Zapata, A. Larrea, M.A. Laguna-Bercero, Lanthanide nickelates for their application on Solid Oxide Cells. Electrochim. Acta 444, 141970 (2023). https://doi.org/10.1016/j.electacta.2023.141970

    Article  CAS  Google Scholar 

  33. Zhao H, Lam WA, Sheng L, Wang L, Bai P, Yang Y, et al. Cobalt‐Free Cathode Materials: Families and their Prospects. Adv. Energy. Mater. 12 (2022) https://doi.org/10.1002/aenm.202103894.

  34. N. Shah, X. Xu, J. Love, H. Wang, Z. Zhu, L. Ge, Mitigating thermal expansion effects in solid oxide fuel cell cathodes: A critical review. J. Power. Sources 599, 234211 (2024). https://doi.org/10.1016/j.jpowsour.2024.234211

    Article  CAS  Google Scholar 

  35. S.S. Hashim, F. Liang, W. Zhou, J. Sunarso, Cobalt-Free Perovskite Cathodes for Solid Oxide Fuel Cells. ChemElectroChem 6, 3549–3569 (2019). https://doi.org/10.1002/celc.201900391

    Article  CAS  Google Scholar 

  36. A.K. Yadav, S. Sinha, A. Kumar, Advancements in composite cathodes for intermediate-temperature solid oxide fuel cells: A comprehensive review. Int. J. Hydrogen Energy 59, 1080–1093 (2024). https://doi.org/10.1016/j.ijhydene.2024.02.124

    Article  CAS  Google Scholar 

  37. Y. Dong, J. Li, Oxide Cathodes: Functions, Instabilities, Self Healing, and Degradation Mitigations. Chem. Rev. 123, 811–833 (2023). https://doi.org/10.1021/acs.chemrev.2c00251

    Article  CAS  PubMed  Google Scholar 

  38. T. Wang, A. Chutia, D.J.L. Brett, P.R. Shearing, G. He, G. Chai et al., Palladium alloys used as electrocatalysts for the oxygen reduction reaction. Energy Environ. Sci. 14, 2639–2669 (2021). https://doi.org/10.1039/D0EE03915B

    Article  CAS  Google Scholar 

  39. M. Irshad, R. Idrees, K. Siraj, I. Shakir, M. Rafique, Ain Qul et al., Electrochemical evaluation of mixed ionic electronic perovskite cathode LaNi1-xCoxO3-δ for IT-SOFC synthesized by high temperature decomposition. Int J Hydrogen Energy 46, 10448–56 (2021). https://doi.org/10.1016/j.ijhydene.2020.09.180

    Article  CAS  Google Scholar 

  40. S. Lee, M. Kim, K.T. Lee, J.T.S. Irvine, T.H. Shin, Enhancing Electrochemical CO 2 Reduction using Ce(Mn, Fe)O2 with La(Sr)Cr(Mn)O3 Cathode for High-Temperature Solid Oxide Electrolysis Cells. Adv. Energy Mater. 11, 2100339 (2021). https://doi.org/10.1002/aenm.202100339

    Article  CAS  Google Scholar 

  41. S. Rauf, B. Zhu, M.A.K.Y. Shah, C. Xia, Z. Tayyab, N. Ali et al., Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performance. Renew Energy 172, 336–49 (2021). https://doi.org/10.1016/j.renene.2021.03.031

    Article  CAS  Google Scholar 

  42. Sirvent J de D, Buzi F, Baiutti F, Tarancón A. Advances in nanoengineered air electrodes: towards high-performance solid oxide cells. Nanoengineered Materials for Solid Oxide Cells, (IOP Publishing 2023), p. 1–1–1–35. https://doi.org/10.1088/978-0-7503-4064-9ch1.

  43. S. He, S.P. Jiang, Electrode/electrolyte interface and interface reactions of solid oxide cells: Recent development and advances. Progr Nat Sci : Mater Intl 31, 341–372 (2021). https://doi.org/10.1016/j.pnsc.2021.03.002

    Article  CAS  Google Scholar 

  44. L. dos Santos-Gómez, J. Zamudio-García, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, Recent progress in nanostructured electrodes for solid oxide fuel cells deposited by spray pyrolysis. J. Power. Sources 507, 230277 (2021). https://doi.org/10.1016/j.jpowsour.2021.230277

    Article  CAS  Google Scholar 

  45. O.Y. Akduman, A.M. Soydan, Fabrication and characterization of micro-tubular solid oxide fuel cells with yttria stabilized zirconia and Hafnia-Erbia co-doped bismuth oxide bilayer electrolyte. Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.04.268

    Article  Google Scholar 

  46. Shaikh Abdul MA, Muchtar A, Raharjo J, Khaerudini DS. A Review on the Process-Structure-Performance of Lanthanum Strontium Cobalt Ferrite Oxide for Solid Oxide Fuel Cells Cathodes. Intl J Integr Eng 14 (2022). https://doi.org/10.30880/ijie.2022.14.02.017.

  47. C. Yang, L. Chen, H. Hou, G. Zou, X. Ji, Z. Wu, Advanced Characterization Techniques and Theoretical Calculation. Sodium‐Ion Batteries (Wiley, 2024), pp.247–309. https://doi.org/10.1002/9783527841684.ch6

    Book  Google Scholar 

  48. A.C.M. Loy, W.L. Ng, S. Bhattacharya, Advanced characterization techniques for the development of Subatomic scale catalysts: One step closer to industrial scale fabrication. Mater Today Catal 4, 100033 (2024). https://doi.org/10.1016/j.mtcata.2023.100033

    Article  Google Scholar 

  49. S.H. Woo, K.E. Song, S.-W. Baek, H. Kang, W. Choi, T.H. Shin et al., Pr- and Sm-Substituted Layered Perovskite Oxide Systems for IT-SOFC Cathodes. Energies (Basel) 14, 6739 (2021). https://doi.org/10.3390/en14206739

    Article  CAS  Google Scholar 

  50. S. Farhan, M. Mohsin, A.H. Raza, R. Anwar, B. Ahmad, R. Raza, Co-doped cerium oxide Fe0.25-xMnxCe0.75O2-δ as a composite cathode material for IT-SOFC. J Alloys Compd 906, 164319 (2022). https://doi.org/10.1016/j.jallcom.2022.164319

    Article  CAS  Google Scholar 

  51. S. Wang, J. Zan, W. Qiu, D. Zheng, F. Li, W. Chen et al., Evaluation of perovskite oxides LnBaCo2O5+δ (Ln = La, Pr, Nd and Sm) as cathode materials for IT-SOFC. J. Electroanal. Chem. 886, 115144 (2021). https://doi.org/10.1016/j.jelechem.2021.115144

    Article  CAS  Google Scholar 

  52. J. Zan, S. Wang, D. Zheng, F. Li, W. Chen, Q. Pei et al., Characterization and functional application of PrBa0.5Sr0.5Co1.5Fe0.5O5+ cathode material for IT-SOFC. Mater Res Bull 137, 111173 (2021). https://doi.org/10.1016/j.materresbull.2020.111173

    Article  CAS  Google Scholar 

  53. X. Li, C. Shi, G. Zhang, G. Zheng, Z. Huang, X. Shen et al., A medium-entropy perovskite oxide La0.7Sr0.3Co0.25Fe0.25Ni0.25Mn0.25O3-δ as intermediate temperature solid oxide fuel cells cathode material. Ceram Int 49, 30187–95 (2023). https://doi.org/10.1016/j.ceramint.2023.06.275

    Article  CAS  Google Scholar 

  54. A.I. Klyndyuk, D.S. Kharytonau, M. Mosiałek, E.A. Chizhova, A. Komenda, R.P. Socha et al., Double substituted NdBa(Fe Co, Cu)2O5+δ layered perovskites as cathode materials for intermediate-temperature solid oxide fuel cells – correlation between structure and electrochemical properties. Electrochim. Acta 411, 140062 (2022). https://doi.org/10.1016/j.electacta.2022.140062

    Article  CAS  Google Scholar 

  55. S.U. Costilla-Aguilar, M.J. Escudero, R.F. Cienfuegos-Pelaes, J.A. Aguilar-Martínez, Double perovskite La1.8Sr0.2CoFeO5+δ as a cathode material for intermediate temperature solid oxide fuel cells. J Alloys Compd 862, 158025 (2021). https://doi.org/10.1016/j.jallcom.2020.158025

    Article  CAS  Google Scholar 

  56. X. Liu, F. Jin, X. Liu, N. Sun, J. Li, Y. Shen et al., Effect of calcium doping on Sm1–Ca BaCo2O5+ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 390, 138830 (2021). https://doi.org/10.1016/j.electacta.2021.138830

    Article  CAS  Google Scholar 

  57. M. Rafaqat, G. Ali, N. Ahmad, S.H.M. Jafri, S. Atiq, G. Abbas et al., The substitution of La and Ba in X0.5Sr0.5Co0.8Mn0.2O3 as a perovskite cathode for low temperature solid oxide fuel cells. J Alloys Compd 937, 168214 (2023). https://doi.org/10.1016/j.jallcom.2022.168214

    Article  CAS  Google Scholar 

  58. Guo D, Li A, Lu C, Qiu D, Niu B, Wang B. High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells. Ceram. Int. 2023. https://doi.org/10.1016/j.ceramint.2023.08.145.

  59. S.U. Rehman, M.H. Hassan, S.Y. Batool, H.-S. Kim, R.-H. Song, T.-H. Lim et al., A highly stable Co3O4-GDC nanocomposite cathode for intermediate temperature solid oxide fuel cells. Int. J. Hydrogen Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.03.341

    Article  Google Scholar 

  60. X. Bao, X. Su, S. Wang, B. Pan, L. Wang, L. Zhang et al., Effects of Bi-doping on structure and properties of YBaCo2O5+ layered perovskite cathode for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 965, 171391 (2023). https://doi.org/10.1016/j.jallcom.2023.171391

    Article  CAS  Google Scholar 

  61. K.H. Tan, H.A. Rahman, M.S. Azami, U.A. Yusop, N.A. Baharuddin, M.I.N. Ma’arof, Electrochemical and material characteristics of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-Sm0.2Ce0.8O1.9 carbonate perovskite cathode composite for low-temperature solid oxide fuel cell. Ceram Int 48, 34258–64 (2022). https://doi.org/10.1016/j.ceramint.2022.07.325

    Article  CAS  Google Scholar 

  62. N. Li, L. Sun, Q. Li, T. Xia, L. Huo, H. Zhao, Electrode properties of CuBi2O4 spinel oxide as a new and potential cathode material for solid oxide fuel cells. J. Power. Sources 511, 230447 (2021). https://doi.org/10.1016/j.jpowsour.2021.230447

    Article  CAS  Google Scholar 

  63. F. Bu, F. Yang, Y. He, M. Wang, Y. Li, Q. Zhou, double perovskite oxide as a novel cathode for intermediate-temperature solid oxide fuel cell. Mater Res Bull 146, 111624 (2022). https://doi.org/10.1016/j.materresbull.2021.111624

    Article  CAS  Google Scholar 

  64. W. Yi, Y. Tian, C. Lu, B. Wang, Y. Liu, S. Gao et al., Highly active and stable BaCo0.8Zr0.1Y0.1O3-δ cathode for intermediate temperature solid oxide fuel cells. J Eur Ceram Soc 42, 2860–9 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.01.057

    Article  CAS  Google Scholar 

  65. S. Peng, S. Lei, S. Wen, J. Xue, H. Wang, A Ruddlesden-Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures. Chin. J. Chem. Eng. 56, 25–32 (2023). https://doi.org/10.1016/j.cjche.2022.08.023

    Article  CAS  Google Scholar 

  66. C. Yao, J. Yang, H. Zhang, S. Chen, J. Meng, K. Cai, Evaluation of bismuth doped La2-Bi NiO4+ (x = 0, 0.02 and 0.04) as cathode materials for solid oxide fuel cells. Ceram Int 47, 24589–96 (2021). https://doi.org/10.1016/j.ceramint.2021.05.179

    Article  CAS  Google Scholar 

  67. T. Ma, T. Xia, Q. Li, L. Sun, L. Huo, H. Zhao, Highly electrocatalytic activity Ruddlesden−Popper type electrode materials for solid oxide fuel cells. J. Eur. Ceram. Soc. 42, 490–498 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.028

    Article  CAS  Google Scholar 

  68. D. Muñoz Gil, K. Boulahya, M. Santamaria Santoyo, M.T. Azcondo, U. Amador, Superior Performance as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells of the Ruddlesden–Popper n = 2 Member Eu 2 SrCo 0.50 Fe 1.50 O 7−δ with Low Cobalt Content. Inorg Chem 60, 3094–105 (2021). https://doi.org/10.1021/acs.inorgchem.0c03391

    Article  CAS  PubMed  Google Scholar 

  69. T. Ghorbani-Moghadam, A. Kompany, M. Golmohammad, Study of structural, electrical and electrochemical properties of La0.7Sr1.3Co1−xFexO4 (x = 0, 0.1, 0.3, 0.5) Ruddlesden-Popper oxides as promising cathode for intermediate solid oxide fuel cells. J Alloys Compd 900, 163382 (2022). https://doi.org/10.1016/j.jallcom.2021.163382

    Article  CAS  Google Scholar 

  70. H. Qi, P. Qiu, T. Zhang, D. Liu, M. Cheng, B. Tu, Self-assembled, high-performing cobalt-free Ba0.5A0.5Fe0.8Zr0.2O3-δ (A=Sr2+/Sm3+) composite cathode for intermediate-temperature solid oxide fuel cells. Ceram Int 48, 28669–77 (2022). https://doi.org/10.1016/j.ceramint.2022.06.181

    Article  CAS  Google Scholar 

  71. S. Wang, J. Xu, M. Wu, Z. Song, L. Wang, L. Zhang et al., Cobalt–free perovskite cathode BaFe0.9Nb0.1O3– for intermediate–temperature solid oxide fuel cell. J Alloys Compd 872, 159701 (2021). https://doi.org/10.1016/j.jallcom.2021.159701

    Article  CAS  Google Scholar 

  72. G. Xue, X. Zhang, L. Wang, Y. Hao, J. Li, H. Sun et al., Synthesis and characterization of fibrous La0.8Sr0.2Fe1-xCuxO3-δ cathode for intermediate-temperature solid oxide fuel cells. Ceram Int 48, 25940–8 (2022). https://doi.org/10.1016/j.ceramint.2022.05.272

    Article  CAS  Google Scholar 

  73. A. Belotti, Y. Wang, A. Curcio, J. Liu, E. Quattrocchi, S. Pepe et al., The influence of A-site deficiency on the electrochemical properties of (Ba0.95La0.05)1-xFeO3-δ as an intermediate temperature solid oxide fuel cell cathode. Int J Hydrogen Energy 47, 1229–40 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.098

    Article  CAS  Google Scholar 

  74. H. Li, Z. Lü, High-performance fluorine-doped cobalt-free oxide as a potential cathode material for solid oxide fuel cells. Int. J. Hydrogen Energy 46, 2503–2510 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.074

    Article  CAS  Google Scholar 

  75. H.G. Desta, D. Tian, Q. Yang, S. Zhu, K. Song, Y. Chen et al., Developing a new Sr and Co-free composite cathode of solid oxide fuel cells with high performance. Chem. Phys. Lett. 806, 140037 (2022). https://doi.org/10.1016/j.cplett.2022.140037

    Article  CAS  Google Scholar 

  76. Q. Yang, J. Lu, C. Li, D. Tian, Y. Ding, X. Lu et al., Tailoring the electrochemical reduction kinetics of dual-phase BaCe0.5Fe0.5O cathode via incorporating Mo for IT-SOFCs. J Eur Ceram Soc 43, 6180–8 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.06.006

    Article  CAS  Google Scholar 

  77. D. Cademartori, A. Maria Asensio, D. Clematis, J.F. Basbus, M. Viviani, S. Presto et al., A high-performance Co-free electrode for solid oxide cells: La0.7Sr0.3Cu0.15Fe0.85O3-δ synthesis and characterisation. J Alloys Compd 965, 171334 (2023). https://doi.org/10.1016/j.jallcom.2023.171334

    Article  CAS  Google Scholar 

  78. L. Gao, M. Zhu, T. Xia, Q. Li, T. Li, H. Zhao, Ni-doped BaFeO3− perovskite oxide as highly active cathode electrocatalyst for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 289, 428–436 (2018). https://doi.org/10.1016/j.electacta.2018.09.096

    Article  CAS  Google Scholar 

  79. J. Gao, Q. Li, Z. Zhang, Z. Lü, B. Wei, A cobalt-free bismuth ferrite-based cathode for intermediate temperature solid oxide fuel cells. Electrochem. Commun. 125, 106978 (2021). https://doi.org/10.1016/j.elecom.2021.106978

    Article  CAS  Google Scholar 

  80. J. Gao, Q. Li, L. Sun, L. Huo, H. Zhao, Enhanced electrocatalytic activity and CO2 tolerant Bi0.5Sr0.5Fe1-Ta O3- as cobalt-free cathode for intermediate-temperature solid oxide fuel cells. Ceram Int 45, 20226–33 (2019). https://doi.org/10.1016/j.ceramint.2019.06.295

    Article  CAS  Google Scholar 

  81. Z. Ma, L. Li, Q. Ye, B. Dongyang, W. Yang, F. Dong et al., Facile Approach to Enhance Activity and CO 2 Resistance of a Novel Cobalt-Free Perovskite Cathode for Solid Oxide Fuel Cells. ACS Appl. Mater. Interfaces 14, 30881–30888 (2022). https://doi.org/10.1021/acsami.2c06998

    Article  CAS  PubMed  Google Scholar 

  82. J. Lach, K. Zheng, R. Kluczowski, A. Niemczyk, H. Zhao, M. Chen, Tuning Cu-Content La1−xSrxNi1−yCuyO3−δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs. Materials 15, 8737 (2022). https://doi.org/10.3390/ma15248737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. H. Gong, D. Zhou, X. Zhu, N. Wang, J. Bai, L. Hu et al., Characterization of B‐Site Sc‐doped La2Ni1-xScxO4+δ (x=0, 0.05, 0.10, and 0.15) perovskites as cathode materials for IT-SOFCs. Int J Hydrogen Energy 50, 1492–502 (2024). https://doi.org/10.1016/j.ijhydene.2023.11.010

    Article  CAS  Google Scholar 

  84. B. Admasu Beshiwork, X. Wan, M. Xu, H. Guo, B. Sirak Teketel, Y. Chen et al., A defective iron-based perovskite cathode for high-performance IT-SOFCs: Tailoring the oxygen vacancies using Nb/Ta co-doping. J. Energy Chem. 88, 306–316 (2024). https://doi.org/10.1016/j.jechem.2023.09.015

    Article  CAS  Google Scholar 

  85. I. Bhasin, K.K. Mohan, Development of conducting composite cathodes for IT-SOFCs. Mater. Lett. 354, 135344 (2024). https://doi.org/10.1016/j.matlet.2023.135344

    Article  CAS  Google Scholar 

  86. A. Ghani Harzand, M. Golmohammad, S.A. Zargar, A.M. Khachatourian, A. Nemati, Study of structural, electrical, and electrochemical properties of Sr3-xPrxFe1.8Co0.2O7-δ cathode for IT-SOFCs. Solid State Ion 404, 116421 (2024). https://doi.org/10.1016/j.ssi.2023.116421

    Article  CAS  Google Scholar 

  87. D. Chen, F. Wang, H. Shi, R. Ran, Z. Shao, Systematic evaluation of Co-free LnBaFe2O5+δ (Ln=Lanthanides or Y) oxides towards the application as cathodes for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 78, 466–474 (2012). https://doi.org/10.1016/j.electacta.2012.06.073

    Article  CAS  Google Scholar 

  88. Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang et al., High-Performance Anode Material Sr 2 FeMo 0.65 Ni 0.35 O 6−δ with In Situ Exsolved Nanoparticle Catalyst. ACS Nano 10, 8660–9 (2016). https://doi.org/10.1021/acsnano.6b03979

    Article  CAS  PubMed  Google Scholar 

  89. C. Wang, H. Miao, X. Zhang, J. Huang, J. Yuan, On Fe-based perovskite electrodes for symmetrical reversible solid oxide cells – A review. J. Power. Sources 596, 234112 (2024). https://doi.org/10.1016/j.jpowsour.2024.234112

    Article  CAS  Google Scholar 

  90. Z. Yu, X. Zhang, Z. Lü, H. Li, Boosting the electrochemical performance of cobalt-free Fe-based cathodes by calcium-doping for solid oxide fuel cells. J. Alloys Compd. 980, 173646 (2024). https://doi.org/10.1016/j.jallcom.2024.173646

    Article  CAS  Google Scholar 

  91. L.-M. Xue, S.-B. Li, S.-L. An, N. Li, H.-P. Ma, M.-X. Li, Fe-based double perovskite with Zn doping for enhanced electrochemical performance as intermediate-temperature solid oxide fuel cell cathode material. RSC Adv. 13, 30606–30614 (2023). https://doi.org/10.1039/D3RA04991D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. J. Bai, D. Zhou, X. Zhu, N. Wang, Q. Liang, R. Chen et al., Bi0.5Sr0.5FeO3-δ perovskite B-site doped Ln (Nd, Sm) as cathode for high performance Co-free intermediate temperature solid oxide fuel cell. Ceram Int 49, 28682–92 (2023). https://doi.org/10.1016/j.ceramint.2023.06.124

    Article  CAS  Google Scholar 

  93. J. Gao, D. Ma, H. Zhao, Q. Li, Z. Lü, B. Wei, Synergistically improving electrocatalytic performance and CO2 tolerance of Fe-based cathode catalysts for solid oxide fuel cells. Energy 252, 124050 (2022). https://doi.org/10.1016/j.energy.2022.124050

    Article  CAS  Google Scholar 

  94. H.-X. Zhang, J.-X. Yang, P.-F. Wang, C.-G. Yao, X.-D. Yu, F.-N. Shi, Novel cobalt-free perovskite PrBaFe1.9Mo0.1O5+ as a cathode material for solid oxide fuel cells. Solid State Ion 391, 116144 (2023). https://doi.org/10.1016/j.ssi.2023.116144

    Article  CAS  Google Scholar 

  95. S. Lü, Y. Zhu, X. Fu, R. Huang, Y. Guo, W. Zhang et al., A-site deficient Fe-based double perovskite oxides PrxBaFe2O5+δ as cathodes for solid oxide fuel cells. J. Alloys Compd. 911, 165002 (2022). https://doi.org/10.1016/j.jallcom.2022.165002

    Article  CAS  Google Scholar 

  96. D. Guo, A. Li, C. Lu, D. Qiu, B. Niu, B. Wang, High activity and stability of cobalt-free SmBa0.5Sr0.5Fe2O5+δ perovskite oxide as cathode material for solid oxide fuel cells. Ceram Int 49, 34277–90 (2023). https://doi.org/10.1016/j.ceramint.2023.08.145

    Article  CAS  Google Scholar 

  97. C. Wen, K. Chen, D. Guo, W. Yang, S. Gao, C. Lu et al., High performance and stability of PrBa0.5Sr0.5Fe2O5+δ symmetrical electrode for intermediate temperature solid oxide fuel cells. Solid State Ion 386, 116048 (2022). https://doi.org/10.1016/j.ssi.2022.116048

    Article  CAS  Google Scholar 

  98. S. Kumar, A. Das, S. Omar, Electrochemical Performance of SrFeO 3−δ for Application as a Symmetric Electrode in Solid Oxide Fuel Cells. ACS Appl Energy Mater 6, 2049–2062 (2023). https://doi.org/10.1021/acsaem.2c04034

    Article  CAS  Google Scholar 

  99. J. Zamudio-García, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, LaCrO 3 –CeO 2 -Based Nanocomposite Electrodes for Efficient Symmetrical Solid Oxide Fuel Cells. ACS Appl Energy Mater 5, 4536–4546 (2022). https://doi.org/10.1021/acsaem.1c04116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Q. Yang, M. Chen, B.S. Teketel, D. Tian, Y. Ding, X. Lu et al., Influences of equal A-site rare-deficiency or B-site high-valent metal doping on NdBaFe2O employed as the symmetrical electrode for solid oxide fuel cells. J. Alloys Compd. 918, 165368 (2022). https://doi.org/10.1016/j.jallcom.2022.165368

    Article  CAS  Google Scholar 

  101. C. Sun, L. Bian, W. Yu, Y. Hou, L. Wang, L. Xing et al., Electrochemical performance of Sr1.9La0.1Fe1.5Mo0.5O6-δ symmetric electrode for solid oxide fuel cells with carbon-based fuels. Int J Hydrogen Energy 47, 565–74 (2022). https://doi.org/10.1016/j.ijhydene.2021.10.038

    Article  CAS  Google Scholar 

  102. C. Liu, F. Wang, Y. Ni, S. Wang, B. Qian, Q. Ni et al., Ta-doped PrBaFe2O5+δ double perovskite as a high-performance electrode material for symmetrical solid oxide fuel cells. Int. J. Hydrogen Energy 48, 9812–9822 (2023). https://doi.org/10.1016/j.ijhydene.2022.11.237

    Article  CAS  Google Scholar 

  103. L.A. Omeiza, M.D.M. Rahman, K.A. Kuterbekov, A. Kabyshev, K. Bekmyrza, M. Kubenova et al., Novel sr-doped NdMn0.5Cr0.5O3-δ electrodes for symmetrical solid oxide fuel cell. Electrochem Commun 164, 107730 (2024). https://doi.org/10.1016/j.elecom.2024.107730

    Article  CAS  Google Scholar 

  104. Omeiza LA, Mamudu U, Subramanian Y, Dhanasekaran A, Rahman MdM, Bakar SA, et al. Structure and Electrochemical Characterization of Nd0.5Ba0.5Zr0.8Fe0.2O3+δ Cobalt-Free Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells: An Experimental Investigation. Johnson Matthey Technol Rev. 2024 https://doi.org/10.1595/205651324X17048121572464.

Download references

Funding

This study was supported by the grant with reference number BR21882359, provided by the Ministry of Science and Higher Education of Kazakhstan.

Author information

Authors and Affiliations

Authors

Contributions

Lukman Ahmed Omeiza and Asset Kabyshev: Formal analysis, Writing – original draft. Lukman Ahmed Omieza: Writing – review & editing, Conceptualization, Investigation, Resources, Supervision. Abul Kalam Azad: Formal analysis, Writing – original draft. Kenzhebatyr Bekmyrza: Validation, Investigation, Methodology, Writing – review & editing. Marzhan Kubenova and Shammya Afroze: Formal analysis, Writing – original draft. Kenzhebatyr Bekmyrza and Asset Kabyshev: Writing – review & editing. Saifullah Abu Bakar: Writing – original draft. Lukman Ahmed Omieza: Writing – review & editing. Kairat A Kuterbekov and Abul Kalam Azad: Resources.

Corresponding authors

Correspondence to Lukman Ahmed Omeiza, Asset Kabyshev or Abul Kalam Azad.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Content for publication

Not applicable.

Conflict of interest

The authors affirm that there is no conflict of interest to declare, given that all sources of information used have been appropriately cited and attributed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omeiza, L.A., Kuterbekov, K.A., Kabyshev, A. et al. Limitations and trends on cobalt-free cathode materials development for intermediate-temperature solid oxide fuel cell- an updated technical review. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00737-7

Keywords

Navigation