Skip to main content
Log in

Fabrication of manganese ferrite-reduced graphene oxide nanostructure as an electrode material for high performance supercapacitor

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Recent studies corroborate spinel transition metal oxides as an apical and paramount electrode materials for supercapacitors as an energy storage device, however, some adventitious stability factors restrict their practical applications. The low specific energy and poor electrical conductivity are assumed as prime factors of concerns for these prospective electrode materials. To address such issues, in the current study, we have employed an integrative strategy to synthesize a three-dimensional hierarchical electrode material consisting of manganese ferrite-reduced graphene oxide (MnFe2O4@rGO) nanostructures by a straightforward hydrothermal procedure and subsequently explored its electrocapacitive performance. X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), and X-ray photo spectrometer (XPS) have all been used to analyse the physicochemical properties of the materials. Moreover, using a three-electrode system and a 3 M KOH electrolyte solution, the electrocapacitive performances of the as-synthesised samples have been assessed through galvanostatic charge–discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). As-prepared hierarchical electrode material exhibits gravimetric specific capacitance of 399.17 Fg−1 at a current density of 0.65 Ag−1 with Galvanostatic charging/discharging (GCD) technique and energy density (40.05 Wh/Kg) at power density (276.2 W/Kg. Furthermore, after 5000 cycles with ~ 12% retention, the as-synthesised electrodic nanocomposite shows satisfactory GCD stability without noticeable capacitance deterioration. The MnFe2O4@rGO nano-composite, as synthesised, demonstrates impressive power/energy densities and could be investigated as a potential electrode architecture for large-scale energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available on request from the authors.

Abbreviations

AC:

Active material

rGO:

Reduced Graphene Oxide

NaOH:

Sodium hydroxide

KOH:

Potassium hydroxide

GCE:

Glassy carbon electrode

XRD:

X-ray powder diffraction

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

EDAX:

Energy-dispersive X-ray spectroscopy

CV:

Cyclic voltammetry

GCD:

Galvanostatic charge–discharge

EIS:

Electrochemical impedance spectroscopy

EDLC:

Electrochemical double-layer capacitor

XPS:

X-ray photoelectron spectroscopy

References

  1. M. Aklin, J. Urpelainen, Renewables: The politics of a global energy transition.(Book) https://doi.org/10.7551/mitpress/11112.001.0001, MIT Press (2018)

  2. S. Najib, E. Erdem, Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv. 1(8), 2817–2827 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  3. T.G. Hesser, Energy Efficiency Finance, A Silver Bullet Amid the Buckshot? (Elsevier, Energy Efficiency, 2013), pp.519–539

    Google Scholar 

  4. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Yang, Y. Han, W. Jiang, Y. Zhang, Y. Xu, A.M. Ahmed, Application of the Supercapacitor for Energy Storage in China: Role and Strategy. Appl. Sci. 12, 354 (2021)

    Article  Google Scholar 

  6. M. Abdel Maksoud, R.A. Fahim, A.E. Shalan, M. AbdElkodous, S. Olojede, A.I. Osman et al., Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environ. Chem. Lett. 19, 375–439 (2021)

    Article  CAS  Google Scholar 

  7. A. Kumar, G. Ahmed, M. Gupta, P. Bocchetta, R. Adalati, R. Chandra et al., Theories and models of supercapacitors with recent advancements: impact and interpretations. Nano Express. 2, 022004 (2021)

    Article  Google Scholar 

  8. S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Letters. 12, 1–46 (2020)

    Article  Google Scholar 

  9. G.K. Gupta, P. Sagar, M. Srivastava, J. Singh, S.K. Srivastava, A. Srivastava, Hydrothermally synthesized nickel ferrite nanoparticles integrated reduced graphene oxide nanosheets as an electrode material for supercapacitors. J. Mater. Sci. Mater. Electron. 35, 255 (2024)

    Article  CAS  Google Scholar 

  10. A. Thadathil, Y.A. Ismail, P. Periyat, Ternary 3D reduced graphene oxide/Ni0.5Zn0.5Fe2O 4/polyindole nanocomposite for supercapacitor electrode application. RSC Adv. 11, 35828–41 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Zhu, D. Meng, C. Wang, G. Diao, Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl. Mater. Interfaces 10, 6030–6037 (2013)

    Article  Google Scholar 

  12. T. Huang, W. Cui, Q. Zhang et al., 2D porous layered NiFe2O4 by a facile hydrothermal method for asymmetric supercapacitor. Ionic. 27, 1347–1355 (2021)

    Article  CAS  Google Scholar 

  13. S.-L. Kuo, N.-L. Wu, Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors. J. Power Sources 162, 1437–1443 (2006)

    Article  CAS  Google Scholar 

  14. C. Sandford, M.A. Edwards, K.J. Klunder, D.P. Hickey, M. Li, K. Barman et al., A synthetic chemist’s guide to electroanalytical tools for studying reaction mechanisms. Chem. Sci. 10, 6404–6422 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. S.K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 5, 10–29 (2020)

    Article  Google Scholar 

  16. F. Li, X. Jiang, J. Zhao, S. Zhang, Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy 16, 488–515 (2015)

    Article  CAS  Google Scholar 

  17. L. Yu, G.Z. Chen, Supercapacitors as high-performance electrochemical energy storage devices. Electrochem. Energy Rev. 3, 271–285 (2020)

    Article  Google Scholar 

  18. K. Chen, D. Xue, Searching for electrode materials with high electrochemical reactivity. J. Materiomics. 1, 170–187 (2015)

    Article  Google Scholar 

  19. A. Mishra, V. Sharma, T. Mohanty, B. Kuanr, Microstructural and magnetic properties of rGO/MnFe2O4 nanocomposites; relaxation dynamics. J. Alloy. Compd. 790, 983–991 (2019)

    Article  CAS  Google Scholar 

  20. K. Pratap, P. Ramesh, S. Chella, K.D. Kyung, A.G. Nirmala, A high capacity MnFe2O4/rGO nanocomposite for Li and Na-ion battery applications. RSC Adv. 5, 63304–63310 (2015)

    Article  Google Scholar 

  21. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (r-GO). Graphene. 6, 1–18 (2017)

    Article  CAS  Google Scholar 

  22. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev et al., Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, Effects of pore structure and electrolyte on the capacitive characteristics of steam-and KOH-activated carbons for supercapacitors. J. Power Sources 144, 302–309 (2005)

    Article  CAS  Google Scholar 

  24. G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A. Singh, J. Singh et al., In Situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16, 1–12 (2021)

    Article  Google Scholar 

  25. H. Zhou, X. Zhi, H.-J. Zhai, A facile approach to improve the electrochemical properties of polyaniline-carbon nanotube composite electrodes for highly flexible solid-state supercapacitors. Int. J. Hydrogen Energy 43, 18339–18348 (2018)

    Article  CAS  Google Scholar 

  26. Y. Wang, X. Wu, W. Zhang, S. Huang, One-pot synthesis of MnFe2O4 nanoparticles-decorated reduced graphene oxide for enhanced microwave absorption properties. Mater. Technol. 32, 32–37 (2017)

    Article  CAS  Google Scholar 

  27. H. Lan, T. Pham, N. Tu, L. Thang, Q. Van, V. Phan, L. Anh-Tuan, Functional manganese ferrite/graphene oxide nanocomposites: effects of graphene oxide on the adsorption mechanisms of organic MB dye and inorganic As(v) ions from aqueous solution. RSC Adv. 8, 12376–12389 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  28. P. Makkar, N.N. Ghosh, Facile synthesis of MnFe2O4 hollow sphere-reduced graphene oxide nanocomposites as electrode materials for all-solid-state flexible high-performance asymmetric supercapacitors. ACS Appl. Energy Mater. 3, 2653–2664 (2020)

    Article  CAS  Google Scholar 

  29. H.-H. Huang, K.K.H. De Silva, G. Kumara, M. Yoshimura, Structural evolution of hydrothermally derived reduced graphene oxide. Sci. Rep. 8, 1–9 (2018)

    Google Scholar 

  30. X. Jiao, Y. Qiu, L. Zhang, X. Zhang, Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphite with different graphitization degrees. RSC Adv. 7, 52337–52344 (2017)

    Article  CAS  Google Scholar 

  31. A. Mary Jacintha, V. Umapathy, P. Neeraja, S. Rex JeyaRajkumar, Synthesis and comparative studies of MnFe2O4 nanoparticles with different natural polymers by sol–gel method: structural, morphological, optical, magnetic, catalytic and biological activities. J. Nanostruct. Chem. 7, 375–87 (2017)

    Article  Google Scholar 

  32. R. Muzyka, S. Drewniak, T. Pustelny, M. Chrubasik, G. Gryglewicz, Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy. Materials. 11, 1050 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  33. E.F. Sheka, Y.A. Golubev, N.A. Popova, Graphene domain signature of Raman spectra of sp2 amorphous carbons. Nanomaterials 10, 2021 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822–1873 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. G.K. Gupta, P. Sagar, M. Srivastava, A.K. Singh, J. Singh, S. Srivastava et al., Excellent supercapacitive performance of graphene quantum dots derived from a bio-waste marigold flower (Tagetes erecta). Int. J. Hydrogen Energy 46, 38416–38424 (2021)

    Article  CAS  Google Scholar 

  36. R.S. Yadav, I. Kuřitka, J. Vilcakova, T. Jamatia, M. Machovsky, D. Skoda et al., Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrason. Sonochem. 61, 104839 (2020)

    Article  Google Scholar 

  37. M. Benitez, D. Mishra, P. Szary, G.B. Confalonieri, M. Feyen, A. Lu et al., Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays. J. Phys.: Condens. Matter 23, 126003 (2011)

    CAS  PubMed  Google Scholar 

  38. Y. Wang, R. Cheng, Z. Wen, L. Zhao, Synthesis and characterization of single‐crystalline MnFe2O4 ferrite nanocrystals and their possible application in water treatment. Eur. J. Inorg. Chem. 42, 2942–2947 (2011)

  39. Z. Wei, S. Huang, X. Zhang, C. Lu, Y. He, Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/r-GO nanocomposites. J. Mater. Sci. Mater. Electron. 31, 5176–5186 (2020)

    Article  CAS  Google Scholar 

  40. X.S. Nguyen, G. Zhang, X. Yang, Mesocrystalline Zn-doped Fe3O4 hollow submicrospheres: formation mechanism and enhanced photo-Fenton catalytic performance. ACS Appl. Mater. Interfaces. 9, 8900–8909 (2017)

    Article  CAS  PubMed  Google Scholar 

  41. R.K. Das, S. Mohapatra, Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. J. Mater. Chem. B. 5, 2190–2197 (2017)

    Article  CAS  PubMed  Google Scholar 

  42. S. Kogularasu, M. Akilarasan, S.-M. Chen, E. Elaiyappillai, P.M. Johnson, T.-W. Chen et al., A comparative study on conventionally prepared MnFe2O4 nanospheres and template-synthesized novel MnFe2O4 nano-agglomerates as the electrodes for biosensing of mercury contaminations and supercapacitor applications. Electrochim. Acta 290, 533–543 (2018)

    Article  CAS  Google Scholar 

  43. X. Ting, W.S. Lee, J. Xue, K+Intercalated MnO2 electrode for high-performance aqueous supercapacitor. ACS Appl. Energy Mater. 1, 5619–5626 (2018)

  44. N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, M. Sathish, Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuels 31, 977–985 (2017)

    Article  CAS  Google Scholar 

  45. S. Sharifi, A. Yazdani, K. Rahimi, Incremental substitution of Ni with Mn in NiFe2O4 to largely enhance its supercapacitance properties. Sci. Rep. 10, 1–15 (2020)

    Article  Google Scholar 

  46. T. Purkait, G. Singh, D. Kumar, M. Singh, R.S. Dey, High-performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Sci. Rep. 8, 1–13 (2018)

    Article  CAS  Google Scholar 

  47. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018)

    Article  CAS  Google Scholar 

  48. L. Xu, M. Jia, Y. Li, X. Jin, F. Zhang, High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci. Rep. 7, 1–9 (2017)

    Google Scholar 

  49. Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes–A review. J. Materiomics. 2, 37–54 (2016)

    Article  Google Scholar 

  50. P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao et al., Transition metal sulphides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8, 1703259 (2018)

    Article  Google Scholar 

  51. S. Ahmed, M. Rafat, A. Ahmed, Nitrogen doped activated carbon derived from orange peel for supercapacitor application. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 035008 (2018)

    Article  Google Scholar 

  52. R. Rajalakshmi, K. Remya, C. Viswanathan, N. Ponpandian, Enhanced electrochemical activities of morphologically tuned MnFe2O4 nanoneedles and nanoparticles integrated on reduced graphene oxide for highly efficient supercapacitor electrodes. Nanoscale Adv. 3, 2887–2901 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors (GKP & AS) express their gratitude to the Prof. Vandana Singh, Vice Chancellor, VBS Purvanchal University for all the motivation and required supports in the research work. SKS acknowledges Institute of Eminence Scheme (BHU) for faculty with Development Scheme No.: 6031. PS is thankful to DST, New Delhi for providing INSPIRE Fellowship (DST/INSPIRE/03/2018/000041). Authors convey their thanks to CIF IIT-BHU, and SATHI-BHU for providing various characterization facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

GKP; Methodology, Investigation, PS; Methodology, Investigation, MS; Methodology, Investigation, AKS; Analyzing the data, SA; TEM Investigations, JS; Investigations, Writing & review, SKS; Project administration, Writing & review, Editing, AS; Conceptualization, Supervision, Writing & Editing.

All authors read and approved the final manuscript.

Corresponding authors

Correspondence to S. K. Srivastava or Amit Srivastava.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, G.K., Sagar, P., Srivastava, M. et al. Fabrication of manganese ferrite-reduced graphene oxide nanostructure as an electrode material for high performance supercapacitor. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00725-x

Keywords

Navigation