Skip to main content
Log in

Facile fabrication of quantum dot–sensitized solar cells with multilayer TiO2 NCs/TiO2 HSs/CIS/CdS/CdSe(Xmin)/ZnS photoanode and modification of light scattering and co-sensitization for higher efficiencies

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In this research, quantum dot–sensitized solar cells (QDSCs) were created by employing a co-sensitization approach on a new photoelectrode comprising multiple layers with a cascaded energy-gap structure. The new multilayer photoelectrode consisted of double-layer scaffolds, and a bottom layer of TiO2 nanocrystals (NCs) coated with as-synthesized TiO2 hollow layers (HSs) was utilized in QDSCs. Herein, we offer an eco-friendly, facile, and ultrafast aqueous method to the preparation of CuInS2 (CIS) quantum dots (QDs) as the sensitizer for QDSCs with TiO2 NPs/TiO2 HSs/CIS/CdS/CdSe/ZnS photoelectrode. The production of CIS NCs took place in an aqueous solution through a facile modified chemical precipitation method, followed by their deposition using a drop-casting process. Additionally, the formation of the CdSe layer was achieved employing a chemical bath deposition (CBD) technique. The time of CBD was varied in a short range of 3–10 min for the CdSe QD layer. The outcomes illustrated a considerable efficiency of 5.17% for the QDSC with TiO2 NCs/CIS/CdS/CdSe/ZnS photoanode while the CdSe QDs were deposited at 5 min of the CBD process. The other improved TiO2 NCs/TiO2 HSs/CIS/CdS/CdSe/ZnS photoanode demonstrated a short circuit current density (JSC) of 24.18 mA/cm2, an open circuit voltage (VOC) of 621 mV, a fill factor (FF) of 0.40, and a power conversion efficiency (PCE) of 5.86%. This PCE was improved about 106% compared to those of the reference cell with TiO2 NPs/CIS/ZnS photoanode structure.

Graphical Abstract

Schematic of the CuInS2/CdS/CdSe QD–sensitized solar cell (a) and corresponding flat band energy diagram (b) and J-V characteristics of the reference and co-sensitized devices (c).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Balis et al., Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim. Acta 91, 246–252 (2013)

    Article  CAS  Google Scholar 

  2. M.P. Dare-Edwards et al., Sensitisation of semiconducting electrodes with ruthenium-based dyes. Faraday Discuss. Chem. Soc. 70, 285–298 (1980)

    Article  Google Scholar 

  3. B. O’regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    Article  Google Scholar 

  4. P.P. Boix et al., Hole transport and recombination in all-solid Sb2S3-sensitized TiO2 solar cells using CuSCN as hole transporter. J Phys Chem C 116(1), 1579–1587 (2012)

    Article  CAS  Google Scholar 

  5. M.P. Genovese, I.V. Lightcap, P.V. Kamat, Sun-believable solar paint. A transformative one-step approach for designing nanocrystalline solar cells. ACS Nano 6(1), 865–872 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. S. Rühle, M. Shalom, A. Zaban, Quantum-dot-sensitized solar cells. ChemPhysChem 11(11), 2290–2304 (2010)

    Article  PubMed  Google Scholar 

  7. A.J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10(8), 2735–2741 (2010)

    Article  CAS  PubMed  Google Scholar 

  8. J.B. Sambur, T. Novet, B. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science 330(6000), 63–66 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 46(23), 15578 (1992)

    Article  CAS  Google Scholar 

  10. Y.-J. Shen, Y.-L. Lee, Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications. Nanotechnology 19(4), 045602 (2008)

    Article  PubMed  Google Scholar 

  11. H.-J. Lee et al., Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide semiconductors for QD sensitized solar cells. Bull. Korean Chem. Soc. 28(6), 953–958 (2007)

    Article  CAS  Google Scholar 

  12. H.J. Lee et al., CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J Phys Chem C 112(30), 11600–11608 (2008)

    Article  CAS  Google Scholar 

  13. W. Lee et al., Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum. Electrochem. Commun. 10(10), 1579–1582 (2008)

    Article  CAS  Google Scholar 

  14. X. Zhao et al., Fabrication of POSS-coated CdTe quantum dots sensitized solar cells with enhanced photovoltaic properties. J. Alloy. Compd. 726, 593–600 (2017)

    Article  CAS  Google Scholar 

  15. H. Seo et al., Analysis on the effect of polysulfide electrolyte composition for higher performance of Si quantum dot-sensitized solar cells. Electrochim. Acta 95, 43–47 (2013)

    Article  CAS  Google Scholar 

  16. M.A. Abbas et al., Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction. Phys. Chem. Chem. Phys. 17(15), 9752–9760 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    Article  CAS  Google Scholar 

  18. N.S.M. Mustakim et al., Quantum dots processed by SILAR for solar cell applications. Sol. Energy 163, 256–270 (2018)

    Article  Google Scholar 

  19. H. Tung, Quantum dots solar cells based On CdS TiO2 photoanode. Int. J. Latest Res. Sci. Technol 3, 15–18 (2014)

    Google Scholar 

  20. J.-K. Sun et al., Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy 32, 130–156 (2017)

    Article  CAS  Google Scholar 

  21. F. Ji et al., Oriented rutile TiO2 nanorod arrays for efficient quantum dot-sensitized solar cells with extremely high open-circuit voltage. Ceram. Int. 42(10), 12194–12201 (2016)

    Article  CAS  Google Scholar 

  22. T. Shu et al., Mesoscopic nitrogen-doped TiO2 spheres for quantum dot-sensitized solar cells. Electrochim. Acta 68, 166–171 (2012)

    Article  CAS  Google Scholar 

  23. J.H. Bang, P.V. Kamat, Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3(6), 1467–1476 (2009)

    Article  CAS  PubMed  Google Scholar 

  24. H. Wang et al., In situ versus ex situ assembly of aqueous-based thioacid capped CdSe nanocrystals within mesoporous TiO2 films for quantum dot sensitized solar cells. J Phys Chem C 116(1), 484–489 (2012)

    Article  CAS  Google Scholar 

  25. H.J. Lee et al., Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25(13), 7602–7608 (2009)

    Article  CAS  PubMed  Google Scholar 

  26. R. Laghumavarapu et al., Improved device performance of In As∕ Ga As quantum dot solar cells with GaP strain compensation layers. Appl. Phys. Lett. 91(24), 243115 (2007)

    Article  Google Scholar 

  27. A.M. Smith, S. Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43(2), 190–200 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M.D. Regulacio, M.-Y. Han, Composition-tunable alloyed semiconductor nanocrystals. Acc. Chem. Res. 43(5), 621–630 (2010)

    Article  CAS  PubMed  Google Scholar 

  29. X. Peng, Band gap and composition engineering on a nanocrystal (BCEN) in solution. Acc. Chem. Res. 43(11), 1387–1395 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. C. Cai et al., Tailoring defects of CuInS2 quantum dots for sensitized solar cells. J. Alloy. Compd. 719, 227–235 (2017)

    Article  CAS  Google Scholar 

  31. X. Zhong et al., Composition-tunable Zn x Cd1-x Se nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125(28), 8589–8594 (2003)

    Article  CAS  PubMed  Google Scholar 

  32. X. Zhong et al., Alloyed Zn x Cd1-x S nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125(44), 13559–13563 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. J. Zhou et al., Preparation of CuInS2 microspheres via a facile solution–chemical method. Mater. Lett. 65(12), 2001–2003 (2011)

    Article  CAS  Google Scholar 

  34. Z. Wang et al., Facile synthesis of Cu–In–S/ZnS core/shell quantum dots in 1-dodecanethiol for efficient light-emitting diodes with an external quantum efficiency of 7.8%. Chem Mater 30(24), 8939–8947 (2018)

    Article  CAS  Google Scholar 

  35. P.-H. Chuang, C.C. Lin, R.-S. Liu, Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl. Mater. Interfaces. 6(17), 15379–15387 (2014)

    Article  CAS  PubMed  Google Scholar 

  36. D.H. Jara et al., Size-dependent photovoltaic performance of CuInS2 quantum dot-sensitized solar cells. Chem. Mater. 26(24), 7221–7228 (2014)

    Article  CAS  Google Scholar 

  37. P.K. Santra et al., CuInS2-sensitized quantum dot solar cell. Electrophoretic deposition, excited-state dynamics, and photovoltaic performance. J Phys Chem Lett 4(5), 722–729 (2013)

    Article  CAS  PubMed  Google Scholar 

  38. Z. Peng et al., Long wavelength optical absorption and photovoltaic performance enhancement on CuInS2 and PbS quantum dot co-sensitized solar cells. J. Alloy. Compd. 701, 131–137 (2017)

    Article  CAS  Google Scholar 

  39. Y. Ma et al., Improving the performance of quantum dot sensitized solar cells by employing Zn doped CuInS 2 quantum dots. Adv Compos Hybrid Mater 5, 402–409 (2022)

    Article  CAS  Google Scholar 

  40. F. Gao et al., Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CuInS2 quantum dots. J. Colloid Interface Sci. 513, 693–699 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. P. Ilaiyaraja et al., CuInS2 quantum dot sensitized solar cells with high VOC≈ 0.9 V achieved using microsphere-nanoparticulate TiO2 composite photoanode. Solar Energy Mater Solar Cells 178, 208–222 (2018)

    Article  CAS  Google Scholar 

  42. M. Sotodeian, M. Marandi, Fabrication of quantum dot-sensitized solar cells with multilayer TiO 2/PbS (X)/CdS/CdSe/ZnS/SiO 2 photoanode and optimization of the PbS nanocrystalline layer. J. Mater. Sci.: Mater. Electron. 32, 10123–10139 (2021)

    CAS  Google Scholar 

  43. A.M. Holi et al., PbS/CdS/ZnO nanowire arrays: Synthesis, structural, optical, electrical, and photoelectrochemical properties. Chem. Phys. Lett. 750, 137486 (2020)

    Article  CAS  Google Scholar 

  44. U. Bangi, Impact of cadmium salt concentration on CdS nanoparticles synthesized by chemical precipitation method. Chalcogenide Lett 17(11), 537–547 (2020)

    Article  Google Scholar 

  45. K. Jung et al., Effect of manganese dopants on defects, nano-strain, and photovoltaic performance of Mn–CdS/CdSe nanocomposite-sensitized ZnO nanowire solar cells. Compos. Sci. Technol. 179, 79–87 (2019)

    Article  CAS  Google Scholar 

  46. M. Marandi, N. Torabi, F.A. Farahani, Facile fabrication of well-performing CdS/CdSe quantum dot sensitized solar cells through a fast and effective formation of the CdSe nanocrystalline layer. Sol. Energy 207, 32–39 (2020)

    Article  CAS  Google Scholar 

  47. M. Marandi, M. Nazari, Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Sol. Energy 216, 48–60 (2021)

    Article  CAS  Google Scholar 

  48. T. Kamal et al., Chemical bath deposition of CdS layer for thin film solar cell. Asian J. Res. Eng. Sci. Technol 4, 605–612 (2019)

    Google Scholar 

  49. J.-Y. Chang et al., Toward the facile and ecofriendly fabrication of quantum dot-sensitized solar cells via thiol coadsorbent assistance. ACS Appl. Mater. Interfaces. 8(29), 18878–18890 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. Y.-H. Chiang et al., Aqueous solution-processed off-stoichiometric Cu–In–S QDs and their application in quantum dot-sensitized solar cells. J Mater Chem A 6(20), 9629–9641 (2018)

    Article  CAS  Google Scholar 

  51. A. Rasal et al., Efficient quantum-dot-sensitized solar cells with improved stability using thixotropic polymer/nanoparticles-based gel electrolyte. Mater Today Energy 19, 100615 (2021)

    Article  CAS  Google Scholar 

  52. C.I. Santos et al., Hydrothermal synthesis of aqueous-soluble copper indium sulfide nanocrystals and their use in quantum dot sensitized solar cells. Nanomaterials 10(7), 1252 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S. Higashimoto et al., Copper-indium-sulfide colloids on quantum dot sensitized TiO2 solar cell: effects of capping with mercapto-acid linker molecules. J. Colloid Interface Sci. 535, 176–181 (2019)

    Article  CAS  PubMed  Google Scholar 

  54. J. Luo et al., Highly efficient core–shell CuInS 2–Mn doped CdS quantum dot sensitized solar cells. Chem. Commun. 49(37), 3881–3883 (2013)

    Article  CAS  Google Scholar 

  55. J.-Y. Chang et al., Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. ACS Appl. Mater. Interfaces. 5(17), 8740–8752 (2013)

    Article  CAS  PubMed  Google Scholar 

  56. Z. Liang et al., Engineering the synthesized colloidal CuInS 2 passivation layer in interface modification for CdS/CdSe quantum dot solar cells. Dalton Trans. 51(45), 17292–17300 (2022)

    Article  CAS  PubMed  Google Scholar 

  57. M.N.S. Sabet, M. Marandi, F. Ahmadloo, Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2 nanocrystals. Eur Phys J Appl Phys 69(2), 20401 (2015)

    Article  Google Scholar 

  58. M. Marandi, F.A. Farahani, M. Davoudi, Fabrication of submicron/micron size cavities included TiO2 photoelectrodes and optimization of light scattering to improve the photovoltaic performance of CdS quantum dot sensitized solar cells. J. Electroanal. Chem. 799, 167–174 (2017)

    Article  CAS  Google Scholar 

  59. M. Sotodeian, M. Marandi, Effects of PbS quantum dots layer and different light scattering films on the photovoltaic performance of double passivated PbS, CdS and CdSe quantum dots sensitized solar cells. Sol. Energy 221, 418–432 (2021)

    Article  CAS  Google Scholar 

  60. Y. Feng et al., Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals? J. Appl. Phys. 117(12) (2015)

  61. A. Bradley, A. Jay, A method for deducing accurate values of the lattice spacing from X-ray powder photographs taken by the Debye-Scherrer method. Proc Phys Soc 44(5), 563 (1932)

    Article  CAS  Google Scholar 

  62. A. Raevskaya et al., Non-stoichiometric Cu–In–S@ ZnS nanoparticles produced in aqueous solutions as light harvesters for liquid-junction photoelectrochemical solar cells. RSC Adv. 6(102), 100145–100157 (2016)

    Article  CAS  Google Scholar 

  63. L. Zhang et al., Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J Mater Chem A 5(40), 21442–21451 (2017)

    Article  CAS  Google Scholar 

  64. A.S. Fuhr et al., Light emission mechanisms in CuInS2 quantum dots evaluated by spectral electrochemistry. ACS Photonics 4(10), 2425–2435 (2017)

    Article  CAS  Google Scholar 

  65. B. Chen et al., Highly emissive and color-tunable CuInS2-based colloidal semiconductor nanocrystals: off-stoichiometry effects and improved electroluminescence performance. Adv. Func. Mater. 22(10), 2081–2088 (2012)

    Article  CAS  Google Scholar 

  66. T.-L. Li, Y.-L. Lee, H. Teng, CuInS2 quantum dots coated with CdS as high-performance sensitizers for TiO2 electrodes in photoelectrochemical cells. J. Mater. Chem. 21(13), 5089–5098 (2011)

    Article  CAS  Google Scholar 

  67. J. Halme et al., Spectral characteristics of light harvesting, electron injection, and steady-state charge collection in pressed TiO2 dye solar cells. J Phys Chem C 112(14), 5623–5637 (2008)

    Article  CAS  Google Scholar 

  68. A. Fillinger, B. Parkinson, The adsorption behavior of a ruthenium-based sensitizing dye to nanocrystalline TiO2 coverage effects on the external and internal sensitization quantum yields. J. Electrochem. Soc. 146(12), 4559 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Marandi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkhaneh, A., Marandi, M. Facile fabrication of quantum dot–sensitized solar cells with multilayer TiO2 NCs/TiO2 HSs/CIS/CdS/CdSe(Xmin)/ZnS photoanode and modification of light scattering and co-sensitization for higher efficiencies. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00705-1

Keywords

Navigation