Skip to main content
Log in

Structural, optical, dielectric, and magnetic properties of Zn-doped copper ferrite—sol–gel approach

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The various compositions of zinc-doped copper ferrite nanoparticles were prepared through a sol–gel process. The structural analysis is carried out through X-ray diffraction (XRD) and a cubic spinel structure is identified. The functional analysis was carried out through Fourier transform infrared red spectroscopy (FTIR). The microstructure and the element analysis were carried out through SEM with EDAX. The regular and randomized spheres of nano-size are found in the surface analysis. Some marginal absorption in optical behavior was found through UV–visible spectroscopy. The magnetic behavior was investigated through a vibration sample magnetometer. The hysteresis loop indicated the ferromagnetic behavior of ZnCu ferrite. The frequency dependence of the dielectric constant, dielectric loss, and its conductivities were studied through an LCR meter. Further, the interfacial polarization effect was studied significantly. Finally, the electrochemical response was analyzed through a cyclicvoltameter. The relative merits and demerits are interpreted and discussed extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data can be made from the author’s proper request from the editor.

References

  1. S. Mahalakshmi, K. SrinivasaManja, S. Nithiyanantham, M. Rajah, Russ. J. Phys. Chemi. A. 87(11), 1938–1939 (2013)

    Article  CAS  Google Scholar 

  2. Y. Aditya Sumanth, R. Annie Sujatha, S. Mahalakshmi, P.C. Karthika, S. Nithiyanantham, S. Saravanan, M. Azagiri, J. Mater. Sci.: Mater Electron 27, 1616–1621 (2016)

    CAS  Google Scholar 

  3. K.C. Babu Naidu, W. Madhuri, Bull. Mater. Sci. 40, 417 (2017)

    Article  CAS  Google Scholar 

  4. T.V. Sagar, T.S. Rao, K.C. Babu Naidu, Mater. Chem. Phys. 258, 123902 (2020)

    Article  Google Scholar 

  5. M. Madhukara Naik, H.S. Bhojya Naik, G. Nagaraju, M. Vinuth, H. Raja Naika, K. Vinu, Microchem. J. 146, 1227 (2019)

  6. S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Mater. Lett. 162, 60 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M.G. Naseri, E.B. Saion, M. Hashim, A.H. Shaari, H.A. Ahangar, Solid State Commun. 151(14–15), 1031 (2011)

    Article  CAS  Google Scholar 

  8. Y. Ding, Y. Yang, H. Shao, Electrochim. Acta 56(25), 9433 (2011)

    Article  CAS  Google Scholar 

  9. A. Tony Dhiwahar, M. Sundararajan, P. Sakthivel, C.S. Dash, S. Yuvaraj, J. Phys. Chem. Solids. 138, 109257 (2019)

    Article  Google Scholar 

  10. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Solid State Chem. 213, 57 (2014)

    Article  Google Scholar 

  11. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Optik – Int. J. Light. Electron. Optics. 129, 57 (2017)

    Article  CAS  Google Scholar 

  12. T. Ramaprasad, R.J. Kumar, U. Naresh, M. Prakash, D. Kothandan, K.C.B. Naidu, Mater. Res. Express. 5(2018), 095025 (2018)

    Article  Google Scholar 

  13. J. Venturini, R.Y. Sun-Zampiva, S. Arcaro, C. Perez-Bergmann, Ceram. Int. 11, 12381–12388 (2018)

    Article  Google Scholar 

  14. A.T. Pathan, S.N. Mathad, A.M. Shaikh, Int. J. Self-Propagating. High. Temp. Synth. 23(2), 112–117 (2014)

    Article  CAS  Google Scholar 

  15. P. Scherrer, Mathematisch-Physikalische Klasse 2, 98 (1918)

    Google Scholar 

  16. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  17. R. Waldron, Phys. Rev. 99, 1717 (1955)

    Article  Google Scholar 

  18. S. Hanfner, Krist Z. 155, 331 (1961)

    Article  Google Scholar 

  19. W.Z. Lv, B. Liu, Z.K. Luo, X.Z. Ren, P.X. Zhang, J. Alloys. Comp. 465, 261 (2008)

    Article  CAS  Google Scholar 

  20. M. Andrés-Vergés, C. de Julián, J.M. González, C.J. Serna, J. Mater. Sci. 28, 2962 (1993)

    Article  Google Scholar 

  21. T. Suto, K. Haneda, T. Iijima, M. Seki, J. Appl. Phys. A 50, 13 (1990)

    Article  Google Scholar 

  22. S. Surendran, E. Sivasenthil, V. Senthil Kumar, J. Int, Recent. Technol. Eng. 7(5S3), 315–318 (2019)

    Google Scholar 

  23. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509, 2909 (2011)

    Article  CAS  Google Scholar 

  24. K.H. Nasser, M.H. Talaat, Palestinian. J Technol Appl Sci. 2(1), 83–90 (2019)

    Google Scholar 

  25. S.S. Bellad, S.C. Watawe, B.K. Chougule, J. Magn. Magn. Mater. 195, 57–64 (1999)

    Article  CAS  Google Scholar 

  26. P.P. Hankare, M.R. Kadam, R.P. Patil, K.M. Garadkar, R. Sasikala, A.K. Tripathi, J. Alloy Compds. 501, 37–41 (2010)

    Article  CAS  Google Scholar 

  27. L. Neel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. Paris 3, 137–198 (1948)

    Article  CAS  Google Scholar 

  28. Q. Hou, K. Sun, P. Xie, K. Yan, R. Fan, Y. Liu, Mater. Lett. 169, 86 (2016)

    Article  CAS  Google Scholar 

  29. D. Baba Basha, DJ Mater Sci: Mater Electron. 42(5), 5770 (2021)

  30. D. Baba Basha, J. Mater. Sci.: Mater. Electron. 31, 16448 (2020)

    CAS  Google Scholar 

  31. M. Talaat, M. Hammad, J.K. Salem, A. Abu Amsha, N.K. Hejazy, J. Alloys. Compd. 741, 123–130 (2018)

    Article  Google Scholar 

  32. A.T. Apostolov, I.N. Apostolova, J.M. Wesselinowa, J. Appl. Phys. 109, 083939 (2011)

    Article  Google Scholar 

  33. M. Mylarappa, V. Venkata Lakshmi, K.R. Vishnu Mahesh, N. Raghavendra, H.P. Nagaswarupa, Mater. Today: Proc. 5(10), 22425–22432 (2018)

    CAS  Google Scholar 

  34. J. Uke Santosh, P. Mardikar Satish, R. BamboleDevidas, K. Yogesh, N.C. Gajanan, Mater. Sci. Energy. Technol. 3, 446–455 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the management, which provided the necessary facility to complete this work.

Author information

Authors and Affiliations

Authors

Contributions

Authors A, B, and C designed the study, performed the experiment, and drafted the paper, and authors D, E, and F analyzed and revised the paper.

Corresponding author

Correspondence to S. Nithiyanantham.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aruna, R., Nithiyanantham, S., Alam, J. et al. Structural, optical, dielectric, and magnetic properties of Zn-doped copper ferrite—sol–gel approach. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00699-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00699-w

Keywords

Navigation