Skip to main content
Log in

Advancements in water purification: green synthesis of pineapple peel-derived iron manganese binary oxide magnetic nanocomposites for efficient methylene blue adsorption

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The present study explored the green synthesis of a pineapple peel-iron manganese binary oxide magnetic nanocomposite (PP-IMBMN) and its effectiveness in adsorbing cationic methylene blue dye (MBD) from synthetically contaminated water. The PP-IMBMN adsorbent was characterized using SEM/EDAX, TEM, XRD, FTIR, VSM, and point of zero charge analyses. Batch experiments used varying operational parameters, including pH, initial dye concentration, adsorbent dosage, and temperature. Under optimum adsorption conditions, a removal efficiency of 92.68% was achieved. The Langmuir and Freundlich adsorption isotherm models provided good fits to the equilibrium data, albeit with a slightly superior correlation observed for the Langmuir model compared to the Freundlich model. Pseudo-second-order kinetics provides the best explanation for the adsorption data. The thermodynamic study suggested that the adsorption was feasible, endothermic, and accompanied by increased entropy. HCl was observed as the most effective desorbing agent, allowing the PP-IMBMN to be regenerated up to five times in the regeneration trials. Therefore, the PP-IMBMN) stands out as a compelling solution for removing MBD from industrial effluents, showcasing its novelty through remarkable adsorption affinity for dyes, ease of separation, affordability, and reusability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The relevant data supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R.M. Novais, G. Ascensão, D.M. Tobaldi, M.P. Seabra, J.A. Labrincha, Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. J. Clean. Prod. 171, 783–794 (2018). https://doi.org/10.1016/j.jclepro.2017.10.078

    Article  CAS  Google Scholar 

  2. R. Kant, Textile dyeing industry an environmental hazard. Nat. Sci. 04, 22–26 (2012). https://doi.org/10.4236/ns.2012.41004

    Article  CAS  Google Scholar 

  3. H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: a review. Chemosphere. 222, 766–780 (2019). https://doi.org/10.1016/j.chemosphere.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  4. L. Järup, L. Jarup, Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003). https://doi.org/10.1093/bmb/ldg032

    Article  PubMed  Google Scholar 

  5. B. Pradhan, S. Chand, S. Chand, P.R. Rout, S.K. Naik, Emerging groundwater contaminants: a comprehensive review on their health hazards and remediation technologies. Groundw. Sustain. Dev. 20, 100868 (2023). https://doi.org/10.1016/j.gsd.2022.100868

    Article  Google Scholar 

  6. N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri, G. Crini, Worldwide cases of water pollution by emerging contaminants: a review. Environ. Chem. Lett. 20, 2311–2338 (2022). https://doi.org/10.1007/s10311-022-01447-4

    Article  CAS  Google Scholar 

  7. Y. Liu, P. Wang, B. Gojenko, J. Yu, L. Wei, D. Luo, T. Xiao, A review of water pollution arising from agriculture and mining activities in Central Asia: facts, causes and effects. Environ. Pollut. 291, 118209 (2021). https://doi.org/10.1016/j.envpol.2021.118209

    Article  CAS  PubMed  Google Scholar 

  8. A. Nasar, Utilization of tea wastes for the removal of toxic dyes from polluted water—a review. Biomass Convers. Biorefinery. 13, 1399–1415 (2023). https://doi.org/10.1007/s13399-020-01205-y

    Article  CAS  Google Scholar 

  9. I. Nassri, S. Khattabi Rifi, F. Sayerh, S. Souabi, Occurrence, pollution sources, and mitigation prospects of Antibiotics, anti-inflammatories, and endocrine disruptors in the aquatic environment. Environ. Nanotechnol. Monit. Manag. 20, 100878 (2023). https://doi.org/10.1016/j.enmm.2023.100878

    Article  CAS  Google Scholar 

  10. N.A. Qamruzzaman, Kinetics of metribuzin degradation by colloidal manganese dioxide in absence and presence of surfactants. Chem. Pap. 68, 65–73 (2014). https://doi.org/10.2478/s11696-013-0424-7

  11. N.A. Qamruzzaman, Treatment of acetamiprid insecticide from artificially contaminated water by colloidal manganese dioxide in the absence and presence of surfactants. RSC Adv. 4, 62844–62850 (2014). https://doi.org/10.1039/c4ra09685a

  12. J. Gregory, R. V. Dhond, Wastewater treatment by ion exchange. Water Res. 6, (1972). https://doi.org/10.1016/0043-1354(72)90183-2

  13. S.A. Butani, S.J. Mane, Coagulation / flocculation process for cationic, anionic dye removal using water treatment residuals – a review. Int. J. Sci. Technol. Manag. 6, 121–125 (2017)

    Google Scholar 

  14. A.K. Verma, R.R. Dash, P. Bhunia, A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage. 93, 154–168 (2012). https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  15. O. Amuda, I. Amoo, Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 141, 778–783 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.044

    Article  CAS  PubMed  Google Scholar 

  16. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009). https://doi.org/10.1016/j.watres.2009.03.010

    Article  CAS  PubMed  Google Scholar 

  17. A. Cassano, R. Molinari, M. Romano, E. Drioli, Treatment of aqueous effluents of the leather industry by membrane processes. J. Memb. Sci. 181, 111–126 (2001). https://doi.org/10.1016/S0376-7388(00)00399-9

    Article  CAS  Google Scholar 

  18. D. Bahnemann, Photocatalytic water treatment: solar energy applications. Sol. Energy 77, 445–459 (2004). https://doi.org/10.1016/j.solener.2004.03.031

    Article  CAS  Google Scholar 

  19. S. Al-Amshawee, M.Y.B.M. Yunus, A.A.M. Azoddein, D.G. Hassell, I.H. Dakhil, H.A. Hasan, Electrodialysis desalination for water and wastewater: a review. Chem. Eng. J. 380, 122231 (2020). https://doi.org/10.1016/j.cej.2019.122231

    Article  CAS  Google Scholar 

  20. E. Korngold, K. Kock, H. Strathmann, Electrodialysis in advanced waste water treatment. Desalination 24, 129–139 (1977). https://doi.org/10.1016/S0011-9164(00)88079-0

    Article  Google Scholar 

  21. S.H. Lin, C.M. Lin, Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res. 27, 1743–1748 (1993). https://doi.org/10.1016/0043-1354(93)90112-U

    Article  CAS  Google Scholar 

  22. S. Khamparia, D.K. Jaspal, Adsorption in combination with ozonation for the treatment of textile waste water: a critical review. Front. Environ. Sci. Eng. 11, 8 (2017). https://doi.org/10.1007/s11783-017-0899-5

    Article  CAS  Google Scholar 

  23. S. Chakraborty, M.K. Purkait, S. DasGupta, S. De, J.K. Basu, Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep. Purif. Technol. 31, 141–151 (2003). https://doi.org/10.1016/S1383-5866(02)00177-6

    Article  CAS  Google Scholar 

  24. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014). https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  25. H.K. Rajendran, M. Das, R. Chandrasekar, M.A. Deen, B. Murugan, S. Narayanasamy, L. Sahoo, UiO-66 octahedrons for adsorptive removal of direct blue-6: process optimization, interaction mechanism, and phytotoxicity assessment. Environ. Sci. Pollut. Res. 30, 114264–114282 (2023). https://doi.org/10.1007/s11356-023-30296-z

    Article  CAS  Google Scholar 

  26. R. Chandrasekar, H.K. Rajendran, V. Priyan, V.S. Narayanasamy, Valorization of sawdust by mineral acid assisted hydrothermal carbonization for the adsorptive removal of bisphenol A: a greener approach. Chemosphere. 303, 135171 (2022). https://doi.org/10.1016/j.chemosphere.2022.135171

    Article  CAS  PubMed  Google Scholar 

  27. S. Rajoriya, V. Kumar, A. Singh, M. Nigam, K. Roy, Current Research in Green and Sustainable Chemistry Adsorption of methyl red dye from aqueous solution onto eggshell waste material : kinetics, isotherms and thermodynamic studies. Curr. Res. Green Sustain. Chem. 4, 100180 (2021). https://doi.org/10.1016/j.crgsc.2021.100180

    Article  CAS  Google Scholar 

  28. W.T. Tsai, J.M. Yang, C.W. Lai, Y.H. Cheng, C.C. Lin, C.W. Yeh, Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 97, 488–493 (2006). https://doi.org/10.1016/j.biortech.2005.02.050

    Article  CAS  PubMed  Google Scholar 

  29. M.T. Yagub, T.K. Sen, H.M. Ang, Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil Pollut. 223, 5267–5282 (2012). https://doi.org/10.1007/s11270-012-1277-3

    Article  CAS  Google Scholar 

  30. H. Tahir, M. Sultan, N. Akhtar, U. Hameed, T. Abid, Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution. J. Saudi Chem. Soc. 20, S115–S121 (2016). https://doi.org/10.1016/j.jscs.2012.09.007

    Article  CAS  Google Scholar 

  31. A.S. Sartape, A.M. Mandhare, V.V. Jadhav, P.D. Raut, M.A. Anuse, S.S. Kolekar, Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab. J. Chem. 10, S3229–S3238 (2017). https://doi.org/10.1016/j.arabjc.2013.12.019

    Article  CAS  Google Scholar 

  32. M.K. Uddin, A. Nasar, Decolorization of basic dyes solution by utilizing fruit seed powder. KSCE J. Civ. Eng. 24, 345–355 (2020). https://doi.org/10.1007/s12205-020-0523-2

    Article  Google Scholar 

  33. S. Wong, H.H. Tumari, N. Ngadi, N.B. Mohamed, O. Hassan, R. Mat, N.A. Saidina Amin, Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL). J. Clean. Prod. 206, 394–406 (2019). https://doi.org/10.1016/j.jclepro.2018.09.201

    Article  CAS  Google Scholar 

  34. R.J. Khan, A.N.S. Saqib, R. Farooq, R. Khan, M. Siddique, Removal of congo red from aqueous solutions by spent black tea as adsorbent. J. Water Chem. Technol. 40, 206–212 (2018). https://doi.org/10.3103/S1063455X18040057

    Article  Google Scholar 

  35. M. El-Azazy, A.S. El-Shafie, A.A. Issa, M. Al-Sulaiti, J. Al-Yafie, B. Shomar, K. Al-Saad, Potato Peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating Plackett-Burman design. J. Chem. 2019, 1–14 (2019). https://doi.org/10.1155/2019/4926240

    Article  CAS  Google Scholar 

  36. K. Ben Jeddou, F. Bouaziz, F. Ben Taheur, O. Nouri-Ellouz, R. Ellouz-Ghorbel, S. Ellouz-Chaabouni, Adsorptive removal of direct red 80 and methylene blue from aqueous solution by potato peels: a comparison of anionic and cationic dyes. Water Sci. Technol. 83, 1384–1398 (2021). https://doi.org/10.2166/wst.2021.075

    Article  CAS  PubMed  Google Scholar 

  37. G.K. Cheruiyot, W.C. Wanyonyi, J.J. Kiplimo, E.N. Maina, Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Sci. African. 5, e00116 (2019). https://doi.org/10.1016/j.sciaf.2019.e00116

    Article  Google Scholar 

  38. A.S. Franca, L.S. Oliveira, M.E. Ferreira, Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249, 267–272 (2009). https://doi.org/10.1016/j.desal.2008.11.017

    Article  CAS  Google Scholar 

  39. F.A. Pavan, A.C. Mazzocato, Y. Gushikem, Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol. 99, 3162–3165 (2008). https://doi.org/10.1016/j.biortech.2007.05.067

    Article  CAS  PubMed  Google Scholar 

  40. D. Sidiras, F. Batzias, E. Schroeder, R. Ranjan, M. Tsapatsis, Dye adsorption on autohydrolyzed pine sawdust in batch and fixed-bed systems. Chem. Eng. J. 171, 883–896 (2011). https://doi.org/10.1016/j.cej.2011.04.029

    Article  CAS  Google Scholar 

  41. U.B.B. Deshannavar, G.M.M. Ratnamala, P.B.B. Kalburgi, M. El-Harbawi, A. Agarwal, M. Shet, M. Teli, P. Bhandare, Optimization, kinetic and equilibrium studies of disperse yellow 22 dye removal from aqueous solutions using Malaysian teak wood sawdust as adsorbent. Indian Chem. Eng. 58, 12–28 (2016). https://doi.org/10.1080/00194506.2014.987831

    Article  CAS  Google Scholar 

  42. Z. Ahamad, A. Nasar, Utilization of Azadirachta indica sawdust as a potential adsorbent for the removal of crystal violet dye. Sustain. Chem. 4, 110–126 (2023). https://doi.org/10.3390/suschem4010009

    Article  CAS  Google Scholar 

  43. F. Mashkoor, A. Nasar, C. Jeong, Magnetized chitosan nanocomposite as an effective adsorbent for the removal of methylene blue and malachite green dyes. Biomass Convers. Biorefinery. (2022). https://doi.org/10.1007/s13399-021-02282-3

    Article  Google Scholar 

  44. Z. Ahamad, A. Nasar, Polypyrrole-decorated bentonite magnetic nanocomposite: a green approach for adsorption of anionic methyl orange and cationic crystal violet dyes from contaminated water. Environ. Res. 247, 118193 (2024). https://doi.org/10.1016/j.envres.2024.118193

    Article  CAS  PubMed  Google Scholar 

  45. Y. Yao, S. Miao, S. Liu, L.P. Ma, H. Sun, S. Wang, Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chem. Eng. J. 184, 326–332 (2012). https://doi.org/10.1016/j.cej.2011.12.017

    Article  CAS  Google Scholar 

  46. Q. Liu, L.-B. Zhong, Q.-B. Zhao, C. Frear, Y.-M. Zheng, Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl. Mater. Interfaces 7, 14573–14583 (2015). https://doi.org/10.1021/acsami.5b04598

  47. N. Kataria, V.K. Garg, Green synthesis of Fe3O4 nanoparticles loaded sawdust carbon for cadmium (II) removal from water: regeneration and mechanism. Chemosphere 208, 818–828 (2018). https://doi.org/10.1016/j.chemosphere.2018.06.022

  48. G. Zhang, X. Xu, Q. Ji, R. Liu, H. Liu, J. Qu, J. Li, Porous nanobimetallic Fe-Mn cubes with high valent Mn and highly efficient removal of arsenic(III). ACS Appl. Mater. Interfaces 9, 14868–14877 (2017). https://doi.org/10.1021/acsami.7b02127

    Article  CAS  PubMed  Google Scholar 

  49. K. Lu, T. Wang, L. Zhai, W. Wu, S. Dong, S. Gao, L. Mao, Adsorption behavior and mechanism of Fe-Mn binary oxide nanoparticles : adsorption of methylene blue. J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.12.094

    Article  PubMed  Google Scholar 

  50. G. Yin, X. Chen, B. Sarkar, N.S. Bolan, T. Wei, H. Zhou, H. Wang, Co-adsorption mechanisms of Cd(II) and As(III) by an Fe-Mn binary oxide biochar in aqueous solution. Chem. Eng. J. 466, 143199 (2023). https://doi.org/10.1016/j.cej.2023.143199

    Article  CAS  Google Scholar 

  51. G. Zhao, J. Li, X. Niu, K. Tang, S. Wang, W. Zhu, X. Ma, M. Ru, Y. Yang, Facile synthesis of Mn-doped Fe2O3 nanostructures: enhanced CO catalytic performance induced by manganese doping. New J. Chem. 40, 3491–3498 (2016). https://doi.org/10.1039/c5nj03694a

  52. S. Zhang, X. Fan, J. Xue, A novel magnetic manganese oxide halloysite composite by one-pot synthesis for the removal of methylene blue from aqueous solution. J. Alloys Compd. 930, 167050 (2023). https://doi.org/10.1016/j.jallcom.2022.167050

    Article  CAS  Google Scholar 

  53. M.A. El-Ghobashy, I.A. Salem, W.M. El-Dahrawy, M.A. Salem, Fabrication of α-MnO2/Fe-Mn binary oxide nanocomposite as an efficient adsorbent for the removal of methylene blue from wastewater. J. Mol. Struct. 1272, 134118 (2023). https://doi.org/10.1016/j.molstruc.2022.134118

  54. C. Yang, T. Ju, X. Wang, Y. Ji, C. Yang, H. Lv, The preparation of a novel iron / manganese binary oxide for the efficient removal of hexavalent chromium [Cr ( VI )] from aqueous solutions. RSC Adv. 10, 10612–10623 (2020). https://doi.org/10.1039/C9RA10558A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. T. Huang, D. Song, C. Yang, S. Zhang, Nonthermal plasma-irradiated polyvalent ferromanganese binary hydro(oxide) for the removal of uranyl ions from wastewater. Environ. Res. 217, 114911 (2023). https://doi.org/10.1016/j.envres.2022.114911

    Article  CAS  PubMed  Google Scholar 

  56. J. Lu, F. Zhang, Novel Fe–Mn oxide/zeolite composite material for rapid removal of toxic copper ions from aqueous solutions. J. Clean. Prod. 397, 136496 (2023). https://doi.org/10.1016/j.jclepro.2023.136496

    Article  CAS  Google Scholar 

  57. S. Hmamouchi, A. El Yacoubi, B.C. El Idrissi, Using egg ovalbumin to synthesize pure α-Fe2O3 and cobalt doped α-Fe2O3: structural, morphological, optical and photocatalytic properties. Heliyon. 8, e08953 (2022). https://doi.org/10.1016/j.heliyon.2022.e08953

  58. M. Rahmayanti, A. Nurul Syakina, I. Fatimah, T. Sulistyaningsih, Green synthesis of magnetite nanoparticles using peel extract of jengkol (Archidendron pauciflorum) for methylene blue adsorption from aqueous media. Chem. Phys. Lett. 803, 139834 (2022). https://doi.org/10.1016/j.cplett.2022.139834

    Article  CAS  Google Scholar 

  59. N. Faaizatunnisa, R. Ediati, H. Fansuri, H. Juwono, S. Suprapto, A.R.P. Hidayat, L.L. Zulfa, Facile green synthesis of core–shell magnetic MOF composites (Fe3O4@SiO2@HKUST-1) for enhanced adsorption capacity of methylene blue. Nano-Struct. Nano-Objects. 34, 100968 (2023). https://doi.org/10.1016/j.nanoso.2023.100968

  60. J. Xi, R. Zhang, L. Ye, X. Du, X. Lu, Multi-step preparation of Fe and Si modified biochar derived from waterworks sludge towards methylene blue adsorption. J. Environ. Manage. 304, 114297 (2022). https://doi.org/10.1016/j.jenvman.2021.114297

    Article  CAS  PubMed  Google Scholar 

  61. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

First author: sample preparation, experimental studies, calculations, figures, graphical designing, original draft; second (corresponding) author: supervision, management, review, editing, finalization. All authors have discussed the final manuscript and decided to submit it.

Corresponding author

Correspondence to Abu Nasar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 534 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M., Nasar, A. Advancements in water purification: green synthesis of pineapple peel-derived iron manganese binary oxide magnetic nanocomposites for efficient methylene blue adsorption. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00693-2

Keywords

Navigation