Skip to main content
Log in

Superior antimicrobial activity of cytocompatible ZnO bionanocomposites against skin-and wound-infecting bacteria

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

We report biogenic synthesis of ZnO nanoparticles using phytochemical-enriched medicinal plant Azadirachta indica with the viewpoint of augmenting therapeutic potential of the resultant AIZnO bionanocomposites (AIZnO-NC). As-synthesized samples were subjected to comprehensive physico-chemical characterization to get insights into the structure, size, morphology, and possibility of stabilization/surface functionalization of nano-ZnO by organic moieties of plant origin. The antimicrobial activity of the typical AIZnO-NC was tested by agar-well diffusion method against Gram-negative (K. pneumoniae, E. coli, P. aeruginosa) and Gram-positive (S. aureus) bacteria. Although the antimicrobial potential of the AIZnO-NC was found to be effective against all the tested human pathogens, it is particularly notable in the case of S. aureus, the notorious opportunistic bacteria responsible for drug-resistant skin and wound infections. The MIC value was recorded as 0.23 ± 0.05, 0.26 ± 0.05, 0.43 ± 0.10, and 0.16 ± 0.05 mg/ml against K. pneumoniae, E. coli, P. aeruginosa, and S. aureus, respectively. Besides, growth curve study revealed that the growth of S. aureus was completely inhibited at 0.16 ± 0.05 mg/ml of AIZnO-NC. Cytotoxicity checked against HeLa cells by using different concentrations of AIZnO-NC displayed acceptably safe cytotoxicity for AIZnO bionanocomposites. In terms of favorable biocompatibility, antimicrobial activity, and less cytotoxicity, biogenic AIZnO-NC appears to be a promising candidate in skin-care applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. U. Desselberger, Emerging and re-emerging infectious diseases. J. Infe. 40(1), 3–15 (2000). https://doi.org/10.1053/jinf.1999.0624

    Article  CAS  Google Scholar 

  2. S.B. Levy, The challenge of antibiotic resistance. Sci. Amer. 278(3), 46–53 (1998). https://doi.org/10.1038/scientificamerican0398-46

    Article  CAS  PubMed  Google Scholar 

  3. T. Watanabe, Infective heredity of multiple drug resistance in bacteria. Bacterio. rev. 27(1), 87–115 (1963). https://doi.org/10.1128/br.27.1.87-115.1963

    Article  CAS  Google Scholar 

  4. N. Qureshi, R. Patil, M. Shinde et al., Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave assisted solvothermal route. Appl. Nanosci. 5(3), 331–341 (2015). https://doi.org/10.1007/s13204-014-0322-5

    Article  CAS  Google Scholar 

  5. S. Nookala, N.V.K.V.P. Tollamadugu, G.K. Thimmavajjula, D. Ernest, Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines. Adv. Nano Res. 3(2), 97–109 (2015). https://doi.org/10.12989/anr.2015.3.2.097

    Article  Google Scholar 

  6. N. Supraja, B. Avinash, T.N.V.K.V. Prasad, Nelumbonucifera extracts mediated synthesis of silver nanoparticles for the potential applications in medicine and environmental remediation. Adv. Nano Res. 5(4), 373–392 (2017). https://doi.org/10.12989/anr.2017.5.4.373

    Article  Google Scholar 

  7. N. Supraja, J. Dhivya, T.N.V.K.V. Prasad, E. David, Synthesis, characterization and dose dependent antimicrobial and anticancerous efficacy of phycogenic (Sargassummuticum) silver nanoparticles against Breast Cancer Cells (MCF 7) cell line. Adv. Nano Res. 6(2), 183–200 (2018). https://doi.org/10.12989/anr.2018.6.2.183

    Article  Google Scholar 

  8. O.O. Ozdemir, F. Soyer, Synthesis, characterization, and antimicrobial activities of 3 3-HPAAHPAA-AlgAlg-Chi nanoparticles. Adv. Nano Res. 11(3), 227–237 (2021). https://doi.org/10.12989/anr.2021.11.3.227

    Article  Google Scholar 

  9. P.C. Mane, D.D. Kadam, A.N. Khadse et al., Green adeptness in synthesis of non-toxic copper and cobalt oxide nanocomposites with multifaceted bioactivities. Cancer Nanotech. 14(79), 1–26 (2023). https://doi.org/10.1186/s12645-023-00226-2

    Article  CAS  Google Scholar 

  10. N. Qureshi, S. Lee, R. Chaudhari et al., Hydrothermal generation of 3-dimensional WO3 nanocubes, nanobars and nanobricks, their antimicrobial and anticancer properties. J. Nanosci. Nanotech. 21(10), 5337–5343 (2021). https://doi.org/10.1166/jnn.2021.19450

    Article  CAS  Google Scholar 

  11. P.C. Mane, R.D. Chaudhari, M.D. Shinde et al., Designing ecofriendly bionanocomposite assembly with improved antimicrobial and potent on-site zika virus vector larvicidal activities with its mode of action. Sci. Rep. 7(1), 1–12 (2017). https://doi.org/10.1038/s41598-017-15537-9

    Article  CAS  Google Scholar 

  12. R. Prucek, J. Tucek, M. Kilianova et al., The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomater. 32(21), 4704–4713 (2011). https://doi.org/10.1016/j.biomaterials.2011.03.039

    Article  CAS  Google Scholar 

  13. N. Qureshi, R. Chaudhari, P. Mane et al., Nanoscale Mo- MoO3 entrapped in engineering thermoplastic: inorganic pathway to bactericidal and fungicidal action. IEEE Trans. NanoBiosci. 15(3), 258–264 (2016). https://doi.org/10.1109/TNB.2016.2535285

    Article  Google Scholar 

  14. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett. 7(3), 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  15. T. Kavitha, A.I. Gopalan, K.P. Lee, S.Y. Park, Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50(8), 2994–3000 (2012). https://doi.org/10.1016/j.carbon.2012.02.082

    Article  CAS  Google Scholar 

  16. B.E. Abdel-Ghany, B.M. Abdel-Hady, A.M. El-Kady et al., Characterizations of nano-zinc doped hydroxyapatite to use as bone tissue engineering. Adv. Mat. Res. 4(4), 193–205 (2015). https://doi.org/10.12989/amr.2015.4.4.193

    Article  Google Scholar 

  17. C. Yi, Z. Yu, X. Sun et al., FA/Mel@ZnO nanoparticles as drug self-delivery systems for RPE protection against oxidative stress. Adv. Nano Res. 13(1), 87–96 (2022). https://doi.org/10.12989/anr.2022.13.1.087

    Article  Google Scholar 

  18. N. Shreyash, S. Bajpai, M.A. Khan et al., Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl. Nano Mater. 4(11), 11428–11457 (2021). https://doi.org/10.1021/acsanm.1c02946

    Article  CAS  Google Scholar 

  19. P.C. Mane, S.A. Sayyed, D.D. Kadam et al., Terrestrial snail-mucus mediated green synthesis of silver nanoparticles and in vitro investigations on their antimicrobial and anticancer activities. Sci. Rep. 11(1), 1–16 (2021). https://doi.org/10.1038/s41598-021-92478-4

    Article  CAS  Google Scholar 

  20. M.S. Akhtar, J. Panwar, Y.S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sust. Chem. Engi. 1(6), 591–602 (2013). https://doi.org/10.1021/sc300118u

    Article  CAS  Google Scholar 

  21. C.A. Soto-Robles, P.A. Luque, C.M. Gomez-Gutierrez et al., Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Res. Phy. 15, 102807 (2019). https://doi.org/10.1016/j.rinp.2019.102807

    Article  Google Scholar 

  22. S.O. Ogunyemi, Y. Abdallah, M. Zhang et al., Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonasoryzae pv. Oryzae. Arti. Cells Nanomed. Biotech 47(1), 341–352 (2019). https://doi.org/10.1080/21691401.2018.1557671

    Article  CAS  Google Scholar 

  23. G. Sharmila, C. Muthukumaran, K. Sandiya et al., Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J. Nanostruct. Chem. 8(3), 293–299 (2018). https://doi.org/10.1007/s40097-018-0271-8

    Article  CAS  Google Scholar 

  24. J. Suresh, G. Pradheesh, V. Alexramani et al., Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costuspictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Natural Sci. Nanosci. Nanotech 9(1), 015008 (2018). https://doi.org/10.1088/2043-6254/aaa6f1

    Article  CAS  Google Scholar 

  25. S. Chaudhary, R.K. Kanwar, A. Sehgal et al., Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front. Plant Sci. 8, 1–13 (2017). https://doi.org/10.3389/fpls.2017.00610

    Article  Google Scholar 

  26. M.J. Haque, M.M. Bellah, M.R. Hassan, S. Rahman, Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Expr. 1(1), 010007 (2020). https://doi.org/10.1088/2632-959X/ab7a43

    Article  Google Scholar 

  27. T. Bhuyan, K. Mishra, M. Khanuja et al., Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Proce. 32, 55–61 (2015). https://doi.org/10.1016/j.mssp.2014.12.053

    Article  CAS  Google Scholar 

  28. H.R. Madan, S.C. Sharma, D. Suresh et al., Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectro. Acta Part A: Mol. and Biomol Spectro. 152, 404–416 (2016). https://doi.org/10.1016/j.saa.2015.07.067

    Article  CAS  Google Scholar 

  29. N.R. Farnsworth, Biological and phytochemical screening of plants. J. Pharma. Sci. 55(3), 225–276 (1966). https://doi.org/10.1002/jps.2600550302

    Article  CAS  Google Scholar 

  30. J.N. Chin, R.N. Jones, H.S. Sader et al., Potential synergy activity of the novel ceragenin, CSA-13, against clinical isolates of Pseudomonas aeruginosa, including multidrug-resistant P. aeruginosa. J. Antimicro. Chemothe. 61(2), 365–370 (2008). https://doi.org/10.1093/jac/dkm457

    Article  CAS  Google Scholar 

  31. P.A. Wayne, Analysis and presentation of cumulative antimicrobial susceptibility test data; Approved Guideline. CLSI docu. M39-A4 (2014)

  32. H.J. Heipieper, R.U.T.H. Diefenbach, H. Keweloh, Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Enviro. Microbio. 58(6), 1847–1852 (1992). https://doi.org/10.1128/aem.58.6.1847-1852.1992

    Article  CAS  Google Scholar 

  33. B.A. Avelar-Freitas, V.G. Almeida, M.C.X. Pinto et al., Trypan blue exclusion assay by flow cytometry. Brazilian J. Med. Biol. Research. 47, 307–315 (2014). https://doi.org/10.1590/1414-431X20143437

    Article  CAS  Google Scholar 

  34. S. Nagarajan, K.A. Kuppusamy, Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotech. 11(1), 1–11 (2013). https://doi.org/10.1186/1477-3155-11-39

    Article  CAS  Google Scholar 

  35. J. Tauc, A. Menth, States in the gap. J. of non-cryst. solids. 8, 569–585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  36. A. Singh, M. Kaushik, Physicochemical investigations of zinc oxide nanoparticles synthesized from Azadirachta indica (Neem) leaf extract and their interaction with Calf-Thymus DNA. Res. In Phy. 13, 102168 (2019). https://doi.org/10.1016/j.rinp.2019.102168

    Article  Google Scholar 

  37. D. Sharma, M.I. Sabela, S. Kanchi et al., Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J. Photoche. Photobio. B: Biology. 162, 199–207 (2016). https://doi.org/10.1016/j.jphotobiol.2016.06.043.J

    Article  CAS  Google Scholar 

  38. S.V. Santhoshkumar, S. Kumar, Rajeshkumar, Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Reso-Effic. Techno. 3(4), 459–465 (2017). https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  39. H.S. Chouhan, S.K. Singh, A review of plants of genus Leucas. J. Pharm. Phytother. 3(2), 13–26 (2011). http://www.academicjournals.org/jpp

  40. J. Sivakumar, C. Premkumar, P. Santhanam, N. Saraswathi, Biosynthesis of silver nanoparticles using Calotropis gigantean leaf. Afr. J. Basic Appl. Sci. 3(6), 265–270 (2011). https://www.researchgate.net/publication/265748961_Biosynthesis_of_Silver_Nanoparticles_Using_Calotropis_gigantean_Leaf. Accessed 27 Feb 2020

  41. J. Sawai, Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J. Microbial. Meth. 54(2), 177–182 (2003). https://doi.org/10.1016/s0167-7012(03)00037-x

    Article  CAS  Google Scholar 

  42. R. Nair, S. Chanda, Activity of some medicinal plants against certain pathogenic bacterial strains. Ind. J. Pharmaco. 38(2), 142–144 (2006). https://doi.org/10.4103/0253-7613.24625

    Article  Google Scholar 

  43. J.A.N. Kluytmans, A. Van Belkum, H. Verbrugh, Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clini. Microbio. Rev. 10(3), 505–520 (1997). https://doi.org/10.1128/CMR.10.3.505

    Article  CAS  Google Scholar 

  44. S.Y.C. Tong, J.S. Davis, E. Eichenberger et al., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbio. Rev. 28(3), 603–661 (2015). https://doi.org/10.1128/CMR.00134-14

    Article  CAS  Google Scholar 

  45. L.M. Schlecht, B.M. Peters, B.P. Krom et al., Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiol. 161(Pt 1), 168–181 (2015). https://doi.org/10.1099/mic.0.083485-0

    Article  CAS  Google Scholar 

  46. S. Joshi, P. Ray, V. Manchanda et al., Indian network for surveillance of antimicrobial resistance (INSAR) group. Methicillin resistant Staphylococcus aureus (MRSA) in India: prevalence & susceptibility pattern. Ind. J. Med. Res. 137(2), 363 (2013)

    Google Scholar 

  47. T.F. Moriarty, R. Kuehl, T. Coenye et al., Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 1(4), 89–99 (2016). https://doi.org/10.1302/2058-5241.1.000037

    Article  PubMed  PubMed Central  Google Scholar 

  48. D.T. Handago, E.A. Zereffa, B.A. Gonfa, Effects of Azadirachta indica leaf extract, capping agents, on the synthesis of pure and Cu doped ZnO-nanoparticles: a green approach and microbial activity. Open Chem. 17(1), 246–253 (2019). https://doi.org/10.1515/chem-2019-0018

    Article  CAS  Google Scholar 

  49. M.F. Sohail, M. Rehman, S.Z. Hussain et al., Green synthesis of zinc oxide nanoparticles by neem extract as multi-facet therapeutic agents. J. Drug Deliv. Sci. Tech. 59, 101911 (2020). https://doi.org/10.1016/j.jddst.2020.101911

    Article  CAS  Google Scholar 

  50. N. Bala, S. Saha, M. Chakraborty et al., Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advs. 5(7), 4993–5003 (2015). https://doi.org/10.1039/C4RA12784F

    Article  CAS  Google Scholar 

  51. I. Alshami, A.E. Alharbi, Antimicrobial activity of Hibiscus sabdariffa extract against uropathogenic strains isolated from recurrent urinary tract infections. Asian Pacific J. Trop. Dis. 4(4), 317–322 (2014). https://doi.org/10.1016/S2222-1808(14)60581-8

    Article  Google Scholar 

  52. L. Othman, A. Sleiman, R.M. Abdel-Massih, Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front. Microbiol. 10, 1–28 (2019). https://doi.org/10.3389/fmicb.2019.00911

    Article  Google Scholar 

  53. S.E. Walsh, J.Y. Maillard, A.D. Russell et al., Activity and mechanisms of action of selected biocidal agents on Gram positive and negative bacteria. J. Appl. Microbial. 94(2), 240–247 (2003). https://doi.org/10.1046/j.1365-2672.2003.01825.x

    Article  CAS  Google Scholar 

  54. A. Hassan, F.A. Al-Salmi, M.A. Saleh et al., Inhibition mechanism of methicillin-resistant staphylococcus aureus by zinc oxide nanorods via suppresses penicillin-binding protein 2a. ACS Omega 8(11), 9969–9977 (2023). https://doi.org/10.1021/acsomega.2c07142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. R. Pati, R.K. Mehta, S. Mohanty et al., Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine: Nanotech. Bio. Med. 10(6), 1195–1208 (2014). https://doi.org/10.1016/j.nano.2014.02.012

    Article  CAS  Google Scholar 

  56. A. Abdelghafar, N. Yousef, M. Askoura, Zinc oxide nanoparticles reduce biofilm formation, synergize antibiotics action and attenuate Staphylococcus aureus virulence in host; an important message to clinicians. BMC Microbio. 22(1), 1–17 (2022). https://doi.org/10.1186/s12866-022-02658-z

    Article  CAS  Google Scholar 

  57. T.V. Surendra, S.M. Roopan, N.A. Al-Dhabi et al., Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities. Nanoscale Res. Lett. 11(1), 1–10 (2016). https://doi.org/10.1186/s11671-016-1750-9

    Article  CAS  Google Scholar 

  58. M. Fletcher, Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance. J. Bacterio. 170(5), 2027–2030 (1988). https://doi.org/10.1128/jb.170.5.2027-2030.1988

    Article  CAS  Google Scholar 

  59. Q.L. Feng, J. Wu, G.Q. Chen et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomedi. Mater. Res. 52(4), 662–668 (2000). https://doi.org/10.1002/1097-4636(20001215)52:4%3c662::aid-jbm10%3e3.0.co;2-3

    Article  CAS  Google Scholar 

  60. S. Dwivedi, R. Wahab, F. Khan et al., Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9(11), e111289 (2014). https://doi.org/10.1371/journal.pone.0111289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Inter. Nano Lett. 2(1), 1–10 (2012). https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  62. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7(9), 1063–1077 (2010). https://doi.org/10.1517/17425247.2010.502560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks and gratitude towards the Chairman and Trustees, JTSSPM, Junnar, and the Principal, Shri Shiv Chhatrapati College, Junnar, for providing all the laboratory facilities. Dr. Dinesh Amalnerkar gratefully acknowledges the authorities of Pimpri Chinchwad College of Engineering (PCCOE) for the financial support. The authors are grateful to the Deanship of Scientific Research for providing partial funding to this work through Research Grant No (RG-1440-093).

Author information

Authors and Affiliations

Authors

Contributions

R. D. Chaudhari and D. P. Amalnerkar devised the broad experimental framework; R. D. Chaudhari directed the research work; P. C. Mane, D. P. Mane, and A. R. Chaudhari conducted the experiments; Jayant Pawar carried out the cytotoxicity study; P. V. Adhyapak helped in the interpretation of the physico-chemical characterization data. Amanullah Fatehmulla provided fitting comments to improve the technical contents of the manuscript; P. C. Mane, P. V. Adhyapak, and R. D. Chaudhari wrote the first draft of the manuscript which was duly modified, improved, and finalized by R. D. Chaudhari and D. P. Amalnerkar with the help of A. M. Aldhafiri. All the authors read and approved the final contents of the manuscript.

Corresponding authors

Correspondence to Ravindra D. Chaudhari or Dinesh P. Amalnerkar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, P.C., Adhyapak, P.V., Mane, D.P. et al. Superior antimicrobial activity of cytocompatible ZnO bionanocomposites against skin-and wound-infecting bacteria. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00681-6

Navigation