Skip to main content
Log in

V2O5-assembled NiAl-layered double hydroxide as high-performance electrode for asymmetric supercapacitor

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Vast research activities were employed to identify efficient cathode materials for supercapacitor. In this present work, nickel aluminium–layered double hydroxide (NiAl LDH)–decorated vanadium pentoxide (NiAl LDH/V2O5) was prepared via a single-step hydrothermal technique. Here, the systematic analysis has been carried out using various analytical techniques to study phase purity, functional group, morphology, chemical state, and electrochemical properties of the prepared samples. BET results revealed that NiAl LDH/V2O5 hybrid composite displays an optimized surface area of about 277.677 m2 g−1 and pore radius of about 1.617 nm. The electrochemical performance for NiAl LDH/V2O5 composite is high among the prepared samples with a specific capacitance of 1169 Fg−1 at 1 Ag−1 and cyclic stability 91% for 5000 charge-discharge cycles. Furthermore, the asymmetric device was fabricated with rGO as anode and NiAl LDH/V2O5 as cathode, the fabricated device delivered the specific capacitance of 129 Fg−1 at 2 Ag−1, and a better specific power of 4654 W kg−1 at a specific energy of 43.1 W h kg−1 with 93% stability after 10,000 cycles. The better performances of NiAl LDH/V2O5 composite compared to other materials might be due to the enhanced surface area which enhanced the electronic conductivity among the materials by rendering high redox-rich active sites and rapid ionic mobility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request. 

References

  1. A. Yu, A. Davies, Z. Chen, Electrochemical supercapacitors. Electrochem. Technol. Energy Storage Convers. 1, 317–382 (2012). https://doi.org/10.1002/9783527639496.ch8

    Article  CAS  Google Scholar 

  2. E.B. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications. Adv. Lithium-Ion Batt. 481–505 (1999). https://doi.org/10.1007/0-306-47508-1_17

  3. B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources 66, 1–14 (1997). https://doi.org/10.1016/S0378-7753(96)02474-3

    Article  CAS  Google Scholar 

  4. Y. Gogotsi, P. Simon, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)

    Article  PubMed  Google Scholar 

  5. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). https://doi.org/10.1039/c3ee44164d

    Article  CAS  Google Scholar 

  6. M. Priyadharshini, M. Sandhiya, M. Sathish, et al., Surfactant-dependant self organisation of nickel pyrophosphate for electrochemical supercapacitors. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-07261-y

  7. P. Matheswaran, P. Karuppiah, S.M. Chen, et al., Fabrication of g-C3N4 nanomesh-anchored amorphous NiCoP2O7: tuned cycling life and the dynamic behavior of a hybrid capacitor. ACS Omega. 3, 18694–18704 (2018). https://doi.org/10.1021/acsomega.8b02635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y.P. Gao, C.N. Sisk, L.J. Hope-Weeks, A sol-gel route to synthesize monolithic zinc oxide aerogels. Chem. Mater. 19, 6007–6011 (2007). https://doi.org/10.1021/cm0718419

    Article  CAS  Google Scholar 

  9. A.V. Nikam, B.L.V. Prasad, A.A. Kulkarni, Wet chemical synthesis of metal oxide nanoparticles: a review. CrystEngComm. 20, 5091–5107 (2018). https://doi.org/10.1039/C8CE00487K

    Article  CAS  Google Scholar 

  10. T. Cottineau, M. Toupin, T. Delahaye, et al., Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl. Phys. A Mater. Sci. Process. 82, 599–606 (2006). https://doi.org/10.1007/s00339-005-3401-3

    Article  CAS  Google Scholar 

  11. X. Gong, N.I. Beedri, M.F.A. Taleb, et al., An overview of bi-layered niobium pentoxide (Nb2O5)-based photoanodes for dye-sensitized solar cells. Adv. Compos. Hybrid Mater. 6, 213 (2023). https://doi.org/10.1007/s42114-023-00791-5

    Article  CAS  Google Scholar 

  12. Y. Kuthati, R.K. Kankala, C.-H. Lee, Layered double hydroxide nanoparticles for biomedical applications: current status and recent prospects. Appl. Clay Sci. 112–113, 100–116 (2015). https://doi.org/10.1016/j.clay.2015.04.018

    Article  CAS  Google Scholar 

  13. A. Udayakumar, P. Dhandapani, S. Ramasamy, S. Angaiah, Layered double hydroxide (LDH) – MXene Nanocomposite for electrocatalytic water splitting: current status and perspective. ES Energy Environ. 20, 902 (2023). https://doi.org/10.30919/esee902

    Article  CAS  Google Scholar 

  14. Z.Z. Yang, J.J. Wei, G.M. Zeng, et al., A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2. Coord. Chem. Rev. 386, 154–182 (2019). https://doi.org/10.1016/j.ccr.2019.01.018

    Article  CAS  Google Scholar 

  15. D. Su, Z. Tang, J. Xie, et al., Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors. Appl. Surf. Sci. 469, 487–494 (2019). https://doi.org/10.1016/j.apsusc.2018.10.276

    Article  CAS  Google Scholar 

  16. W. Qiang, O. Dermot, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 112, 4124–4155 (2012)

    Article  Google Scholar 

  17. X. Ge, C. Gu, Z. Yin, et al., Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni-Al layered double hydroxide (LDH) and reduced graphene oxide. Nano. Energy. 20, 185–193 (2016). https://doi.org/10.1016/j.nanoen.2015.12.020

    Article  CAS  Google Scholar 

  18. L. Zhang, K.N. Hui, K.S. Hui, et al., Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. Int. J. Hydrog. Energy. 41, 9443–9453 (2016). https://doi.org/10.1016/j.ijhydene.2016.04.050

    Article  CAS  Google Scholar 

  19. L. Li, K.S. Hui, K.N. Hui, et al., High-performance solid-state flexible supercapacitor based on reduced graphene oxide/hierarchical core-shell Ag nanowire@NiAl layered double hydroxide film electrode. Chem. Eng. J. 348, 338–349 (2018). https://doi.org/10.1016/j.cej.2018.04.164

    Article  CAS  Google Scholar 

  20. W. Zheng, S. Sun, Y. Xu, et al., Sulfidation of hierarchical NiAl−LDH/Ni−MOF composite for high-performance supercapacitor. ChemElectroChem. 6, 3375–3382 (2019). https://doi.org/10.1002/celc.201900687

    Article  CAS  Google Scholar 

  21. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, High performance supercapacitor based on carbon coated V2O5 nanorods. J. Electroanal. Chem. 758, 111–116 (2015). https://doi.org/10.1016/j.jelechem.2015.10.031

    Article  CAS  Google Scholar 

  22. Y. Zhang, Y. Wang, Z. Xiong, et al., V2O5 Nanowire composite paper as a high-performance lithium-ion battery cathode. ACS Omega. 2, 793–799 (2017). https://doi.org/10.1021/acsomega.7b00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. D.J. Ahirrao, K. Mohanapriya, N. Jha, V2O5 nanowires-graphene composite as an outstanding electrode material for high electrochemical performance and long-cycle-life supercapacitor. Mater. Res. Bull. 108, 73–82 (2018). https://doi.org/10.1016/j.materresbull.2018.08.028

    Article  CAS  Google Scholar 

  24. D. Majumdar, M. Mandal, S.K. Bhattacharya, V2O5 and its carbon-based nanocomposites for supercapacitor applications. ChemElectroChem 6, 1623–1648 (2019). https://doi.org/10.1002/celc.201801761

    Article  CAS  Google Scholar 

  25. W. Zheng, S. Sun, Y. Xu, et al., Facile synthesis of NiAl-LDH/MnO2 and NiFe-LDH/MnO2 composites for high-performance asymmetric supercapacitors. J. Alloys Compd. 768, 240–248 (2018). https://doi.org/10.1016/j.jallcom.2018.07.168

    Article  CAS  Google Scholar 

  26. Y. Wei, X. Zhang, X. Wu, et al., Carbon quantum dots/Ni-Al layered double hydroxide composite for high-performance supercapacitors. RSC Adv. 6, 39317–39322 (2016). https://doi.org/10.1039/c6ra02730j

    Article  CAS  Google Scholar 

  27. W. Wang, N. Zhang, Z. Shi, et al., Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode. Chem. Eng. J. 338, 55–61 (2018). https://doi.org/10.1016/j.cej.2018.01.024

    Article  CAS  Google Scholar 

  28. P. Matheswaran, P. Thangavelu, B. Ganapathi, Controlled approach on spinel lithium manganese oxide as possible cathode for high-performance Li-ion supercapacitors. Mater. Technol. (2019). https://doi.org/10.1080/10667857.2019.1615275

  29. S.J. Marje, P.K. Katkar, S.S. Pujari, et al., Regulated micro-leaf like nickel pyrophosphate as a cathode electrode for asymmetric supercapacitor. Synth. Met. 259, 116224 (2020). https://doi.org/10.1016/j.synthmet.2019.116224

    Article  CAS  Google Scholar 

  30. M. Priyadharshini, T. Pazhanivel, G. Bharathi, Carbon quantum dot incorporated nickel pyrophosphate as alternate cathode for supercapacitors. ChemistrySelect. 5, 2643–2652 (2020). https://doi.org/10.1002/slct.201904334

    Article  CAS  Google Scholar 

  31. P. Matheswaran, P. Karuppiah, S.M. Chen, P. Thangavelu, A binder-free Ni2P2O7/Co2P2O7 nanograss array as an efficient cathode for supercapacitors. New J. Chem. 44, 13131–13140 (2020). https://doi.org/10.1039/d0nj00890g

    Article  CAS  Google Scholar 

  32. X. Liu, J. Xu, L. Ma, et al., Nano-flower S-scheme heterojunction NiAl-LDH/MoS2for enhancing photocatalytic hydrogen production. New J. Chem. 46, 228–238 (2022). https://doi.org/10.1039/d1nj04728k

    Article  CAS  Google Scholar 

  33. N.R. Palapa, T. Taher, R. Mohadi, et al., NiAl-layered double hydroxide intercalated with Keggin polyoxometalate as adsorbent of malachite green: kinetic and equilibrium studies. Chem. Eng. Commun. 209, 684–695 (2022). https://doi.org/10.1080/00986445.2021.1895773

    Article  CAS  Google Scholar 

  34. G. Yang, T. Takei, S. Yanagida, N. Kumada, Synthesis and electrochemical properties of CoAl, NiAl, CoFe and NiFe layered double hydroxide films. J. Ion Exch. 29, 131–135 (2018). https://doi.org/10.5182/jaie.29.131

    Article  CAS  Google Scholar 

  35. X. Li, M. Fortunato, A.M. Cardinale, et al., Electrochemical study on nickel aluminum layered double hydroxides as high-performance electrode material for lithium-ion batteries based on sodium alginate binder. J. Solid State Electrochem. 26, 49–61 (2022). https://doi.org/10.1007/s10008-021-05011-y

    Article  CAS  Google Scholar 

  36. X. Li, L. Yu, G. Wang, et al., Hierarchical NiAl LDH nanotubes constructed via atomic layer deposition assisted method for high performance supercapacitors. Electrochim. Acta. 255, 15–22 (2017). https://doi.org/10.1016/j.electacta.2017.09.155

    Article  CAS  Google Scholar 

  37. P. Matheswaran, P. Karuppiah, P. Thangavelu, Contribution of different charge storage mechanisms in cobalt pyrophosphate–based supercapattery. Ionics (Kiel). (2021). https://doi.org/10.1007/s11581-021-03908-2

  38. F. Yu, Z. Liu, R. Zhou, et al., Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables high-performance sodium-ion capacitors. Mater Horiz. 5, 529–535 (2018). https://doi.org/10.1039/c8mh00156a

    Article  CAS  Google Scholar 

  39. N.I. Chandrasekaran, M. Kumari, H. Muthukumar, M. Matheswaran, Strategy for multifunctional hollow shelled triple oxide Mn-Cu-Al nanocomposite synthesis via microwave-assisted technique. ACS Sustain. Chem. Eng. 6, 1009–1021 (2018). https://doi.org/10.1021/acssuschemeng.7b03339

    Article  CAS  Google Scholar 

  40. J. Kumar, R.R. Neiber, Z. Abbas, et al., Hierarchical NiMn-LDH hollow spheres as a promising pseudocapacitive electrode for supercapacitor application. Micromachines (Basel). 14 (2023). https://doi.org/10.3390/mi14020487

  41. J. Fang, M. Li, Q. Li, et al., Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim. Acta. 85, 248–255 (2012). https://doi.org/10.1016/j.electacta.2012.08.078

    Article  CAS  Google Scholar 

  42. B. Wang, Q. Liu, Z. Qian, et al., Two steps in situ structure fabrication of Ni–Al layered double hydroxide on Ni foam and its electrochemical performance for supercapacitors. J. Power Sources. 246, 747–753 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.035

    Article  CAS  Google Scholar 

  43. H. Sim, C. Jo, T. Yu, et al., Reverse micelle synthesis of colloidal nickel–manganese layered double hydroxide nanosheets and their pseudocapacitive properties. Chemistry – A. Eur. J. Dermatol. 20, 14880–14884 (2014). https://doi.org/10.1002/chem.201403991

    Article  CAS  Google Scholar 

  44. L. Li, R. Li, S. Gai, et al., Facile fabrication and electrochemical performance of flower-like Fe 3 O 4 @C@layered double hydroxide (LDH) composite. J. Mater. Chem. A 2, 8758–8765 (2014). https://doi.org/10.1039/C4TA01186D

    Article  CAS  Google Scholar 

  45. L. Su, C. Ma, T. Hou, W. Han, Selective synthesis and capacitive characteristics of CoNiAl three-component layered double hydroxide platelets. RSC Adv. 3, 19807 (2013). https://doi.org/10.1039/c3ra42567c

    Article  CAS  Google Scholar 

  46. J. Yang, C. Yu, X. Fan, et al., Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances. J. Mater. Chem. A 1, 1963–1968 (2013). https://doi.org/10.1039/C2TA00832G

    Article  CAS  Google Scholar 

  47. M.Z. Iqbal, M.M. Faisal, S.R. Ali, A.M. Afzal, Hydrothermally synthesized zinc phosphate-rGO composites for supercapattery devices. J. Electroanal. Chem. 871, 114299 (2020). https://doi.org/10.1016/j.jelechem.2020.114299

    Article  CAS  Google Scholar 

  48. P. Li, Y. Jiao, S. Yao, et al., Dual role of nickel foam in NiCoAl-LDH ensuring high-performance for asymmetric supercapacitors. New J. Chem. 43, 3139–3145 (2019). https://doi.org/10.1039/C8NJ05447A

    Article  CAS  Google Scholar 

  49. X. Bai, Q. Liu, J. Liu, et al., Hierarchical Co3O4 @Ni(OH) 2 core-shell nanosheet arrays for isolated all-solid state supercapacitor electrodes with superior electrochemical performance. Chem. Eng. J. 315, 35–45 (2017). https://doi.org/10.1016/j.cej.2017.01.010

    Article  CAS  Google Scholar 

  50. X. Wu, L. Jiang, C. Long, et al., Dual support system ensuring porous Co–Al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv. Funct. Mater. 25, 1648–1655 (2015). https://doi.org/10.1002/adfm.201404142

    Article  CAS  Google Scholar 

  51. X. Bai, Q. Liu, H. Zhang, et al., Nickel-cobalt layered double hydroxide nanowires on three dimensional graphene nickel foam for high performance asymmetric supercapacitors. Electrochim. Acta. 215, 492–499 (2016). https://doi.org/10.1016/j.electacta.2016.08.134

    Article  CAS  Google Scholar 

  52. Y. Cheng, H. Zhang, C.V. Varanasi, J. Liu, Improving the performance of cobalt–nickel hydroxide-based self-supporting electrodes for supercapacitors using accumulative approaches. Energy Environ. Sci. 6, 3314 (2013). https://doi.org/10.1039/c3ee41143e

    Article  CAS  Google Scholar 

  53. J. Han, Y. Dou, J. Zhao, et al., Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small. 9, 98–106 (2013). https://doi.org/10.1002/smll.201201336

    Article  CAS  PubMed  Google Scholar 

  54. F.B.M. Ahmed, D. Khalafallah, M. Zhi, Z. Hong, Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv. Compos. Hybrid Mater. 5, 2500–2514 (2022). https://doi.org/10.1007/s42114-022-00496-1

    Article  CAS  Google Scholar 

  55. F. Wang, S. Sun, Y. Xu, et al., High performance asymmetric supercapacitor based on cobalt nickle iron-layered double hydroxide/carbon nanofibres and activated carbon. Sci. Rep. 7, 4707 (2017). https://doi.org/10.1038/s41598-017-04807-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Pazhanivel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariprasath, K., Priyadharshini, M., Balaji, P. et al. V2O5-assembled NiAl-layered double hydroxide as high-performance electrode for asymmetric supercapacitor. emergent mater. (2024). https://doi.org/10.1007/s42247-024-00680-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42247-024-00680-7

Keywords

Navigation