Skip to main content
Log in

State-of-art review on smart perovskites materials: properties and applications

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Materials science has played a very crucial role in developing new technologies so far that could probably address the challenges of economic and ecological sustainability soon. In the field of advanced materials, perovskite oxides stand out to provide a clean environment, ensure enough clean energy, and sanitized water, and provide resources for industrial and growing populations. Perovskite oxides are green and eco-friendly smart materials whose properties might be significantly altered under controlled conditions. In this regard, lead-free perovskite ceramics and their composites such as BaTiO3, K0.5Na0.5NbO3, Bi0.5Na0.5TiO3, LaMnO3, BaMnO3, LaFeO3, K0.5Na0.5NbO3-BiFeO3, BaTiO3-K0.5Na0.5NbO3, BaTiO3-Bi0.5Na0.5TiO3, and many more are gaining attention due to their simple stoichiometry, cost-effectiveness, easy synthesis, eco-friendly behavior, and world-wide applications. In this review, a brief overview is given of the crystal structure and piezoelectric, ferroelectric, magnetic, and multiferroic properties of perovskite oxides. An attempt has been made to cover the progress of selective perovskite oxide and its composites. The recent advances of these perovskite oxides and applications in energy storage, energy scavenging applications via multi-layer ceramic capacitors, supercapacitors, solid-oxide fuel cells, piezoelectric actuators, transducers, sensors, and spintronics are also highlighted. Moreover, recent industrial developments based on these selective perovskite oxides are discussed as well. At the end of this review, future perspectives on current developments of perovskite oxides are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The data of this study will be made available from the corresponding author upon reasonable request.

References

  1. M. Farghali, A.I. Osman, I.M. Mohamed, Z. Chen, L. Chen, I. Ihara, P.S. Yap, D.W. Rooney, Strategies to save energy in the context of the energy crisis: a review. Environ. Chem. Lett. 21, 1–37 (2023)

  2. C. Kenny, M. Snyder, Meeting the sustainable development goal zero targets: what could we do?. Center for global development working paper (472) (2017)

  3. P.P. Walsh, E. Murphy, D. Horan, The role of science, technology and innovation in the UN 2030 agenda. Technol. Forecast. Soc. Chang. 154, 119957 (2020)

    Google Scholar 

  4. S.H. Ali, The materials science imperative in meeting the sustainable development goals. Nat. Mater. 17(12), 1052–1053 (2018)

    CAS  PubMed  Google Scholar 

  5. M.I.A. Abdel Maksoud, A.G. Bedir, M. Bekhit, M.M. Abouelela, R.A. Fahim, A.S. Awed, D.W. Rooney, MoS 2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environ. Chem. Lett. 19, 3645–3681 (2021)

    CAS  Google Scholar 

  6. M. Telychko, J. Lu, Recent advances in atomic imaging of organic-inorganic hybrid perovskites. Nano Mater. Sci. 1(4), 260–267 (2019)

    Google Scholar 

  7. V. Markovich, A. Wisniewski, H. Szymczak, Magnetic properties of perovskite manganites and their modifications. In Handbook of Magnetic Materials, vol 22 (Elsevier, 2014), pp. 1–201

  8. R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32(1), 17–28 (2003)

    CAS  PubMed  Google Scholar 

  9. M.E. Arroyo-de Dompablo, A. Ponrouch, P. Johansson, M.R. Palacín, Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120(14), 6331–6357 (2019)

    PubMed  Google Scholar 

  10. M. Bibes, A. Barthelemy, Oxide spintronics. IEEE Trans. Electron Devices 54(5), 1003–1023 (2007)

    CAS  Google Scholar 

  11. A. Barman, S. Kar-Narayan, D. Mukherjee, Caloric effects in perovskite oxides. Adv. Mater. Interfaces 6(15), 1900291 (2019)

    Google Scholar 

  12. E.A. Lombardo, M.A. Ulla, Perovskite oxides in catalysis: past, present and future. Res. Chem. Intermed. 24, 581–592 (1998)

    CAS  Google Scholar 

  13. T. Wolfram, S. Ellialtioglu, Electronic and optical properties of d-band perovskites (Cambridge University Press, 2006)

    Google Scholar 

  14. Y. Chen, L. Zhang, Y. Zhang, H. Gao, H. Yan, Large-area perovskite solar cells–a review of recent progress and issues. RSC Adv. 8(19), 10489–10508 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, U. Wiesner, Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8(5), 4730–4739 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. M.A. Peña, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101(7), 1981–2018 (2001)

    PubMed  Google Scholar 

  17. N.F. Atta, A. Galal, E.H. El-Ads, Perovskite nanomaterials–synthesis, characterization, and applications. Perovskite materials–synthesis, characterisation, properties, and applications. (2016), pp. 107–151

  18. T. Jia, Z. Zeng, X. Zhang, P. Ohodnicki, B. Chorpening, G. Hackett, Y. Duan, The influence of oxygen vacancy on the electronic and optical properties of ABO 3− δ (A= La, Sr, B= Fe, Co) perovskites. Phys. Chem. Chem. Phys. 21(36), 20454–20462 (2019)

    CAS  PubMed  Google Scholar 

  19. F.S. Galasso, Structure, properties and preparation of perovskite-type compounds: international series of monographs in solid state physics, vol. 5 (Elsevier, 2013)

    Google Scholar 

  20. L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, C.H. Li, Prediction of lattice constant in cubic perovskites. J. Phys. Chem. Solids 67(7), 1531–1536 (2006)

    CAS  Google Scholar 

  21. H. Huang, L. Polavarapu, J.A. Sichert, A.S. Susha, A.S. Urban, A.L. Rogach, Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Mater. 8(11), e328–e328 (2016)

    CAS  Google Scholar 

  22. C.G. Bischak, C.L. Hetherington, H. Wu, S. Aloni, D.F. Ogletree, D.T. Limmer, N.S. Ginsberg, Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Lett. 17(2), 1028–1033 (2017)

    CAS  PubMed  Google Scholar 

  23. T. Kleckers, A1. 1-Electrical strain gauges, piezoelectric sensors or fiberbragg sensors for force measurement: prospects and potentials. Proc. Sens. 2013, 23–27 (2013)

  24. V. Raghavan, Materials science and engineering: a first course. PHI Learning Pvt Ltd (2015)

    Google Scholar 

  25. https://resources.pcb.cadence.com/blog/2020-understanding-a-ferroelectric-hysteresis-loop-in-electronics (open link)

  26. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    CAS  Google Scholar 

  27. Y. Xu, Ferroelectric materials and their applications (Elsevier, 2013)

    Google Scholar 

  28. O. Auciello, J.F. Scott, R. Ramesh, The physics of ferroelectric memories. Phys. Today 51(7), 22–27 (1998)

    CAS  Google Scholar 

  29. F. Jona, G. Shirane, Ferroelectric crystals. (1962)

  30. M.D. Nguyen, C.T. Nguyen, H.N. Vu, G. Rijnders, Experimental evidence of breakdown strength and its effect on energy-storage performance in normal and relaxor ferroelectric films. Curr. Appl. Phys. 19(9), 1040–1045 (2019)

    Google Scholar 

  31. C.W. Ahn, C.H. Hong, B.Y. Choi, H.P. Kim, H.S. Han, Y. Hwang, I.W. Kim, A brief review on relaxor ferroelectrics and selected issues in lead-free relaxors. J. Korean Phys. Soc. 68, 1481–1494 (2016)

    CAS  Google Scholar 

  32. L.K. Pradhan, M. Kar Relaxor ferroelectric oxides: concept to applications. Multifunctional ferroelectric materials. (2021), pp. 49

  33. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y.J. Wang, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy 58, 768–777 (2019)

    CAS  Google Scholar 

  34. F. Li, J. Zhai, B. Shen, H. Zeng, Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications. J. Adv. Dielectr. 8(06), 1830005 (2018)

    CAS  Google Scholar 

  35. S.F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh. Chemie-Chem. Monthly 148, 795–826 (2017)

    CAS  Google Scholar 

  36. Y. Jia, A. Miglio, X. Gonze, M. Mikami, Ab-initio study of oxygen vacancy stability in bulk and Cerium-doped lutetium oxyorthosilicate. J. Lumin. 204, 499–505 (2018)

    CAS  Google Scholar 

  37. L. Dong, R. Jia, B. Xin, B. Peng, Y. Zhang, Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 7(1), 40160 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. N.A. Noor, Q. Mahmood, M. Rashid, B.U. Haq, A. Laref, S.A. Ahmad, Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A= Pb, Sn). J. Solid State Chem. 263, 115–122 (2018)

    CAS  Google Scholar 

  39. S. Dahbi, N. Tahiri, O. El Bounagui, H. Ez-Zahraouy, Electronic, optical, and thermoelectric properties of perovskite BaTiO3 compound under the effect of compressive strain. Chem. Phys. 544, 111105 (2021)

    CAS  Google Scholar 

  40. J. Park, Y.N. Wu, W.A. Saidi, B. Chorpening, Y. Duan, First-principles exploration of oxygen vacancy impact on electronic and optical properties of ABO 3− δ (A= La, Sr; B= Cr, Mn) perovskites. Phys. Chem. Chem. Phys. 22(46), 27163–27172 (2020)

    CAS  PubMed  Google Scholar 

  41. Y. Jee, J.K. Wuenschell, H.W. Abernathy, S. Lee, T.L. Kalapos, G.A. Hackett, P.R. Ohodnicki, High-temperature oxygen sensing behavior of perovskite films on the optical fiber platform. In Oxide-based Materials and Devices X, vol 10919 (SPIE, 2019), pp. 233–241

  42. J.B. Goodenough, Metallic oxides. Prog. Solid State Chem. 5, 145–399 (1971)

    CAS  Google Scholar 

  43. L.K. Aminov, B.Z. Malkin, M.A. Teplov, Handbook of the Physics and Chemistry of Rare Earths, vol. 22, ed. by K.A. Gschneider Jr., L. Eyring (2002) 

  44. A.K. Kundu, Magnetic perovskites. Eng. Mater. (2016)

  45. C.L. Prajapat, S. Singh, D. Bhattacharya, G. Ravikumar, S. Basu, S. Mattauch, A. Paul, Proximity effects across oxide-interfaces of superconductor-insulator-ferromagnet hybrid heterostructure. Sci. Rep. 8(1), 3732 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. H.U. Habermeier, G. Cristiani, R.K. Kremer, O. Lebedev, G. Van Tendeloo, Cuprate/manganite superlattices: A model system for a bulk ferromagnetic superconductor. Phys. C: Supercond. Appl. 364, 298–304 (2001)

    Google Scholar 

  47. C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81(3), 440 (1951)

    CAS  Google Scholar 

  48. A.J. Millis, Electron-lattice coupling in “colossal” magnetoresistance rare earth manganites. J. Appl. Phys. 81(8), 5502–5503 (1997)

    CAS  Google Scholar 

  49. J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M (II)] Mn O 3. Phys. Rev. 100(2), 564 (1955)

    CAS  Google Scholar 

  50. W. Chen, Z. Sun, Z. Wang, L. Gu, X. Xu, S. Wu, C. Gao, Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366(6468), 983–987 (2019)

    CAS  PubMed  Google Scholar 

  51. P. Němec, M. Fiebig, T. Kampfrath, A.V. Kimel, Antiferromagnetic opto-spintronics. Nat. Phys. 14(3), 229–241 (2018)

    Google Scholar 

  52. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Antiferromagnetic spintronics. Nat. Nanotechnol. 11(3), 231–241 (2016)

    CAS  PubMed  Google Scholar 

  53. H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)

    Google Scholar 

  54. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38(8), R123 (2005)

    CAS  Google Scholar 

  55. W. Prellier, M.P. Singh, P. Murugavel, The single-phase multiferroic oxides: from bulk to thin film. J. Phys. Condens. Matter 17(30), R803 (2005)

    CAS  Google Scholar 

  56. D. Khomskii, Classifying multiferroics: mechanisms and effects. Physics 2, 20 (2009)

    Google Scholar 

  57. M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40(4), 223–250 (2015)

    CAS  Google Scholar 

  58. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104(29), 6694–6709 (2000)

    CAS  Google Scholar 

  59. L.A. Shuvalov, N.V. Belov, The symmetry of crystals in which ferromagnetic and ferroelectric properties appear simultaneously. Kristallografiya 7(192), 150–151 (1962)

    Google Scholar 

  60. N.A. Hill, Density functional studies of multiferroic magnetoelectrics. Annu. Rev. Mater. Res. 32(1), 1–37 (2002)

    CAS  Google Scholar 

  61. H. Liu, X. Yang, A brief review on perovskite multiferroics. Ferroelectrics 507(1), 69–85 (2017)

    CAS  Google Scholar 

  62. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti, J.J. Rödel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4(4) (2017)

  63. J. Gao, X. Ke, M. Acosta, J. Glaum, X. Ren, High piezoelectricity by multiphase coexisting point: barium titanate derivatives. MRS Bull. 43(8), 595–599 (2018)

    CAS  Google Scholar 

  64. S.I. Shkuratov, C.S. Lynch, A review of ferroelectric materials for high power devices. J. Materiomics 8(4), 739–752 (2022)

    Google Scholar 

  65. Z. Yao, H. Liu, Y. Liu, Z. Wu, Z. Shen, Y. Liu, M. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109(2–3), 475–481 (2008)

    CAS  Google Scholar 

  66. L. Zhao, B.P. Zhang, P.F. Zhou, L.F. Zhu, J.F. Li, Effect of Li2O addition on sintering and piezoelectric properties of (Ba, Ca)(Ti, Sn) O3 lead-free piezoceramics. J. Eur. Ceram. Soc. 35(2), 533–540 (2015)

    CAS  Google Scholar 

  67. L.F. Zhu, B.P. Zhang, X.K. Zhao, L. Zhao, F.Z. Yao, X. Han, P.F. Zhou, J.F. Li, Phase transition and high piezoelectricity in (Ba, Ca)(Ti1− xSnx) O3 lead-free ceramics. Appl. Phys. Lett. 103(7) (2013)

  68. C. Zhou, W. Liu, D. Xue, X. Ren, H. Bao, J. Gao, L. Zhang, Triple-point-type morphotropic phase boundary based large piezoelectric Pb-free material—Ba (Ti0. 8Hf0. 2) O3-(Ba0. 7Ca0. 3) TiO3. Appl. Phys. Lett. 100(22) (2012)

  69. D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, Large piezoelectric effect in Pb-free Ba (Ti, Sn) O3-x (Ba, ca) TiO3 ceramics. Appl. Phys. Lett. 99(12) (2011)

  70. W. Wang, L.D. Wang, W.L. Li, D. Xu, Y.F. Hou, W.P. Cao, W.D. Fei, Piezoelectric properties of BaTiO3–CaTiO3–BaZrO3 ceramics with compositions near the morphotropic phase boundary. Ceram. Int. 40(9), 14907–14912 (2014)

    CAS  Google Scholar 

  71. M. Acosta, N. Novak, G.A. Rossetti, J. Rödel, Mechanisms of electromechanical response in (1− x) Ba (Zr0. 2Ti0. 8) O3-x (Ba0. 7Ca0. 3) TiO3 ceramics. Appl. Phys. Lett. 107(14) (2015)

  72. G.A. Smolenskii, A.I. Agranovskaya, S.N. Popov, V.A. Isupov, New ferroelectrics of complex composition. Sov. Phys. Tech. Phys. 28, 2152 (1958)

    CAS  Google Scholar 

  73. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018)

    CAS  Google Scholar 

  74. M. Naderer, T. Kainz, D. Schütz, K. Reichmann, The influence of Ti-nonstoichiometry in Bi0. 5Na0. 5TiO3. J. Eur. Ceram. Soc. Soc. 34(3), 663–667 (2014)

    CAS  Google Scholar 

  75. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Effects of Bi nonstoichiometry in (Bi0. 5+ xNa) TiO3 ceramics. Appl. Phys. Lett. 98(1) (2011)

  76. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Giant strain in lead-free piezoceramics Bi0. 5Na0. 5TiO3–BaTiO3–K0. 5Na0. 5NbO3 system. Appl. Phys. Lett. 91(11) (2007)

  77. S. Ullah Jan, A. Zeb, S.J. Milne, Electrical properties of Ca-modified Na0. 5Bi0. 5TiO3–BaTiO3 ceramics. Ceram. Int. Int. 40(10), 15439–15445 (2014)

    CAS  Google Scholar 

  78. B. Parija, Morphotropic Phase boundary in BNT-BZT solid solution: a study by Raman spectroscopy and electromechanical parameters. J. Ceram. Process. Res. 16(5), 565–571 (2015)

    Google Scholar 

  79. A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Algueró, H. Amorín, High-field electromechanical response of Bi0. 5Na0. 5TiO3–Bi0. 5K0. 5TiO3 across its morphotropic phase boundary. J. Phys. D Appl. Phys. 47(5), 055304 (2014)

    CAS  Google Scholar 

  80. Y.R. Zhang, J.F. Li, B.P. Zhang, C.E. Peng, Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2) TiO3–(Bi1/2K1/2) TiO3 lead-free piezoelectric ceramics. J. Appl. Phys. 103(7) (2008)

  81. H.L. Li, Q. Liu, J.J. Zhou, K. Wang, J.F. Li, H. Liu, J.Z. Fang, Grain size dependent electrostrain in Bi1/2Na1/2TiO3-SrTiO3 incipient piezoceramics. J. Eur. Ceram. Soc. 36(11), 2849–2853 (2016)

    CAS  Google Scholar 

  82. F. Weyland, M. Acosta, J. Koruza, P. Breckner, J. Rödel, N. Novak, Criticality: concept to enhance the piezoelectric and electrocaloric properties of ferroelectrics. Adv. Func. Mater. 26(40), 7326–7333 (2016)

    CAS  Google Scholar 

  83. T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, Y. Liu, Effect of Li0. 12Na0. 88NbO3 content on the electrical properties of Bi0. 50Na0. 50TiO3 lead-free piezoelectric ceramics. J. Alloy. Compd. 520, 7–10 (2012)

    CAS  Google Scholar 

  84. A.B. Kounga, S.T. Zhang, W. Jo, T. Granzow, J. Rödel, Morphotropic phase boundary in (1− x) Bi0. 5Na0. 5TiO3–xK0. 5Na0. 5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 92(22) (2008)

  85. D. Lin, K.W. Kwok, H.L.W. Chan, Structure and electrical properties of Bi0. 5Na0. 5TiO3–BaTiO3–Bi0. 5Li0. 5TiO3 lead-free piezoelectric ceramics. Solid State Ionics 178(37–38), 1930–1937 (2008)

    CAS  Google Scholar 

  86. L. Wu, D. Xiao, F. Zhou, Y. Teng, Y. Li, Microstructure, ferroelectric, and piezoelectric properties of (1− x− y) Bi0. 5Na0. 5TiO3–xBaTiO3–yBi0. 5Ag0. 5TiO3 lead-free ceramics. J. Alloys Compd. 509(2), 466–470 (2011)

    CAS  Google Scholar 

  87. J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94 (Bi0. 5Na0. 5) TiO3-0.06 BaTiO3. J. Eur. Ceram. Soc. 37(6), 2365–2371 (2017)

    CAS  Google Scholar 

  88. A. Maqbool, A. Hussain, J.U. Rahman, T.K. Song, W.J. Kim, J. Lee, M.H. Kim, Enhanced electric field-induced strain and ferroelectric behavior of (Bi0. 5Na0. 5) TiO3–BaTiO3–SrZrO3 lead-free ceramics. Ceram. Int. 40(8), 11905–11914 (2014)

    CAS  Google Scholar 

  89. Y.J. Dai, S. Zhang, T.R. Shrout, X.W. Zhang, Piezoelectric and ferroelectric properties of Li‐doped (Bi0. 5Na0. 5) TiO3–(Bi0. 5K0. 5) TiO3–BaTiO3 lead‐free piezoelectric ceramics. J. Am. Ceram. Soc. 93(4), 1108–1113 (2010)

    CAS  Google Scholar 

  90. W. Jo, T. Granzow, E. Aulbach, J. Rödel, D. Damjanovic, Origin of the large strain response in (K0. 5Na0. 5) NbO3-modified (Bi0. 5Na0. 5) TiO3–BaTiO3 lead-free piezoceramics. J. Appl. Phys. 105(9) (2009)

  91. J. Wu, D. Xiao, J. Zhu, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)

    CAS  PubMed  Google Scholar 

  92. J. Wu, Advances in lead-free piezoelectric materials (Springer, Singapore, 2018), pp.379–396

    Google Scholar 

  93. X. Lv, J. Zhu, D. Xiao, X.X. Zhang, J. Wu, Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem. Soc. Rev. 49(3), 671–707 (2020)

    CAS  PubMed  Google Scholar 

  94. K. Nakamura, Y. Kawamura, Orientation dependence of electromechanical coupling factors in KNbO/sub 3. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 750–755 (2000)

    CAS  PubMed  Google Scholar 

  95. F. Rubio-Marcos, J.F. Fernandez, D.A. Ochoa, J.E. García, R.E. Rojas-Hernandez, M. Castro, L. Ramajo, Understanding the piezoelectric properties in potassium-sodium niobate-based lead-free piezoceramics: Interrelationship between intrinsic and extrinsic factors. J. Eur. Ceram. Soc. 37(11), 3501–3509 (2017)

    CAS  Google Scholar 

  96. F. Rubio-Marcos, R. Lopez-Juarez, R.E. Rojas-Hernandez, A. del Campo, N. Razo-Perez, J.F. Fernandez, Lead-free piezoceramics: revealing the role of the rhombohedral–tetragonal phase coexistence in enhancement of the piezoelectric properties. ACS Appl. Mater. Interfaces 7(41), 23080–23088 (2015)

    CAS  PubMed  Google Scholar 

  97. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138(47), 15459–15464 (2016)

    CAS  PubMed  Google Scholar 

  98. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, S.J. Pennycook, Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141(35), 13987–13994 (2019)

    CAS  PubMed  Google Scholar 

  99. J. Wu, D. Xiao, Y. Wang, W. Wu, B. Zhang, J. Zhu, Q. Li, Microstructure and electrical properties of (Li, Ag, Ta, Sb)-modified (K0. 50Na0. 50) NbO3 lead-free ceramics with good temperature stability. J. Phys. D Appl. Phys. 41(12), 125405 (2008)

    Google Scholar 

  100. J. Hao, W. Bai, B. Shen, J. Zhai, Improved piezoelectric properties of (KxNa1− x) 0.94 Li0. 06NbO3 lead-free ceramics fabricated by combining two-step sintering. J. Alloy. Compd. 534, 13–19 (2012)

    CAS  Google Scholar 

  101. P. Palei, P. Kumar, Dielectric, ferroelectric and piezoelectric properties of (1− x)[K0. 5Na0. 5NbO3]− x [LiSbO3] ceramics. J. Phys. Chem. Solids 73(7), 827–833 (2012)

    CAS  Google Scholar 

  102. T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, Z. Xu, Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A 5(2), 554–563 (2017)

    CAS  Google Scholar 

  103. S.L. Yang, C.C. Tsai, Y.C. Liou, C.S. Hong, B.J. Li, S.Y. Chu, Investigation of CuO-doped NKN ceramics with high mechanical quality factor synthesized by a B-site oxide precursor method. J. Am. Ceram. Soc. 95(3), 1011–1017 (2012)

    CAS  Google Scholar 

  104. J. Wu, Perovskite lead-free piezoelectric ceramics. J. Appl. Phys. 127(19) (2020)

  105. A.J.C. Buurma, G.R. Blake, T.T.M. Palstra, U. Adem, Multiferroic materials: physics and properties. Reference Module in materials science and materials engineering, (2016)

  106. S. Dong, J.M. Liu, S.W. Cheong, Z. Ren, Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64(5–6), 519–626 (2015)

    CAS  Google Scholar 

  107. V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90(17) (2007)

  108. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007)

    CAS  PubMed  Google Scholar 

  109. S. Bhuktare, A. Bose, H. Singh, A.A. Tulapurkar, Gyrator based on magneto-elastic coupling at a ferromagnetic/piezoelectric interface. Sci. Rep. 7(1), 840 (2017)

    PubMed  PubMed Central  Google Scholar 

  110. S. Kumar, P. Kumar, R. Walia, V. Verma, Improved ferroelectric, magnetic and photovoltaic properties of Pr doped multiferroic bismuth ferrites for photovoltaic application. Results Phys. 14, 102403 (2019)

    Google Scholar 

  111. W. Kleemann, Magnetoelectric spintronics. J. Appl. Phys. 114(2) (2013)

  112. A. Moser, K. Takano, D.T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, E.E. Fullerton, Magnetic recording: advancing into the future. J. Phys. D Appl. Phys. 35(19), R157 (2002)

    CAS  Google Scholar 

  113. M. Balinskiy, A.C. Chavez, A. Barra, H. Chiang, G.P. Carman, A. Khitun, Magnetoelectric spin wave modulator based on synthetic multiferroic structure. Sci. Rep. 8(1), 10867 (2018)

    PubMed  PubMed Central  Google Scholar 

  114. M.J. Bauer, X. Wen, P. Tiwari, D.P. Arnold, J.S. Andrew, Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires. Microsyst. Nanoeng. 4(1), 37 (2018)

    PubMed  PubMed Central  Google Scholar 

  115. G.R. Love, Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 73(2), 323–328 (1990)

    CAS  Google Scholar 

  116. L. Fulanović, M.H. Zhang, Y. Fu, J. Koruza, J. Rödel, NaNbO3-based antiferroelectric multilayer ceramic capacitors for energy storage applications. J. Eur. Ceram. Soc. 41(11), 5519–5525 (2021)

    Google Scholar 

  117. G.F. Engel, Design and materials of antiferroelectric capacitors for high density power electronic applications. In CIPS 2016; 9th International conference on integrated power electronics systems, (VDE, 2016), pp. 1–7

  118. J. Gao, L. Zhao, Q. Liu, X. Wang, S. Zhang, J.F. Li, Antiferroelectric-ferroelectric phase transition in lead-free AgNbO3 ceramics for energy storage applications. J. Am. Ceram. Soc. 101(12), 5443–5450 (2018)

    CAS  Google Scholar 

  119. S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16(1), 16–22 (2017)

    Google Scholar 

  120. S. Singh, S. Jain, P.S. Venkateswaran, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Hydrogen: a sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 51, 623–633 (2015)

    CAS  Google Scholar 

  121. A.K. Tomar, A. Joshi, G. Singh, R.K. Sharma, Perovskite oxides as supercapacitive electrode: properties, design and recent advances. Coord. Chem. Rev. 431, 213680 (2021)

    CAS  Google Scholar 

  122. J. Yan, S. Li, B. Lan, Y. Wu, P.S. Lee, Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Func. Mater. 30(2), 1902564 (2020)

    CAS  Google Scholar 

  123. Y. Liu, Z. Wang, Y. Zhong, X. Xu, J.P.M. Veder, M.R. Rowles, Z. Shao, Activation-free supercapacitor electrode based on surface-modified Sr2CoMo1-xNixO6-δ perovskite. Chem. Eng. J. 390, 124645 (2020)

    CAS  Google Scholar 

  124. Y. Cao, J. Liang, X. Li, L. Yue, Q. Liu, S. Lu, X. Sun, Recent advances in perovskite oxides as electrode materials for supercapacitors. Chem. Commun. 57(19), 2343–2355 (2021)

    CAS  Google Scholar 

  125. J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13(7), 726–732 (2014)

    CAS  PubMed  Google Scholar 

  126. P.M. Shafi, N. Joseph, A. Thirumurugan, A.C. Bose, Enhanced electrochemical performances of agglomeration-free LaMnO3 perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design. Chem. Eng. J. 338, 147–156 (2018)

    CAS  Google Scholar 

  127. Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, J. Chen, Modulating Mn4+ ions and oxygen vacancies in nonstoichiometric LaMnO3 perovskite by a facile sol-gel method as high-performance supercapacitor electrodes. Electrochim. Acta 253, 422–429 (2017)

    CAS  Google Scholar 

  128. Y.L. Song, Z.C. Wang, Y.D. Yan, M.L. Zhang, G.L. Wang, T.Q. Yin, ... M. Qiu, Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3− δ. J. Energy Chem. 43, 173–181 (2020)

  129. V.S. Devi, K. Kannadasan, P.C. Sharafudeen, P. Elumalai, Performance of sodium-ion supercapattery using LaMnO 3 and rGO in non-aqueous electrolyte. New J. Chem. 46(31), 15130–15144 (2022)

    Google Scholar 

  130. Z. Li, W. Zhang, H. Wang, B. Yang, Two-dimensional perovskite LaNiO3 nanosheets with hierarchical porous structure for high-rate capacitive energy storage. Electrochim. Acta 258, 561–570 (2017)

    CAS  Google Scholar 

  131. W. Che, M. Wei, Z. Sang, Y. Ou, Y. Liu, J. Liu, Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode. J. Alloy. Compd. 731, 381–388 (2018)

    CAS  Google Scholar 

  132. N. Arjun, G.T. Pan, T.C. Yang, The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results Phys. 7, 920–926 (2017)

    Google Scholar 

  133. K.H. Ho, J. Wang, Hydrazine reduction of LaNiO3 for active materials in supercapacitors. J. Am. Ceram. Soc. 100(10), 4629–4637 (2017)

    CAS  Google Scholar 

  134. Z. Li, W. Zhang, C. Yuan, Y. Su, Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties. RSC Adv. 7(21), 12931–12937 (2017)

    CAS  Google Scholar 

  135. G. Guo, K. Ouyang, J. Yu, Y. Liu, S. Feng, M. Wei, Facile synthesis of LaCoO3 with a high oxygen vacancy concentration by the plasma etching technique for high-performance oxygen ion intercalation pseudocapacitors. ACS Appl. Energy Mater. 3(1), 300–308 (2019)

    Google Scholar 

  136. Y. Zhang, J. Ding, W. Xu, M. Wang, R. Shao, Y. Sun, B. Lin, Mesoporous LaFeO3 perovskite derived from MOF gel for all-solid-state symmetric supercapacitors. Chem. Eng. J. 386, 124030 (2020)

    CAS  Google Scholar 

  137. A. Qayyum, M.O. urRehman, F. Ahmad, M.A. Khan, S.M. Ramay, S. Atiq, Performance optimization of Nd-doped LaNiO3 as an electrode material in supercapacitors. Solid State Ionics 395, 116227 (2023)

    CAS  Google Scholar 

  138. Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Sr-doped lanthanum nickelate nanofibers for high energy density supercapacitors. Electrochim. Acta 174, 41–50 (2015)

    CAS  Google Scholar 

  139. Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Symmetric/asymmetric supercapacitor based on the perovskite-type lanthanum cobaltate nanofibers with Sr-SUBSTITUTION. Electrochim. Acta 178, 398–406 (2015)

    CAS  Google Scholar 

  140. W. Wang, B. Lin, H. Zhang, Y. Sun, X. Zhang, H. Yang, Synthesis, morphology and electrochemical performances of perovskite-type oxide LaxSr1-xFeO3 nanofibers prepared by electrospinning. J. Phys. Chem. Solids 124, 144–150 (2019)

    CAS  Google Scholar 

  141. C.T. Alexander, J.T. Mefford, J. Saunders, R.P. Forslund, K.P. Johnston, K.J. Stevenson, Anion-based pseudocapacitance of the perovskite library La1–x Sr x BO3− δ (B= Fe, Mn, Co). ACS Appl. Mater. Interfaces 11(5), 5084–5094 (2019)

    CAS  PubMed  Google Scholar 

  142. W. Wang, W. Liu, M. Kamiko, S. Yagi, Enhanced catalytic activity of perovskite La 1–x Sr x MnO 3+ δ for the oxygen reduction reaction. New J. Chem. 46(27), 13082–13088 (2022)

    CAS  Google Scholar 

  143. X.W. Wang, Q.Q. Zhu, X.E. Wang, H.C. Zhang, J.J. Zhang, L.F. Wang, Structural and electrochemical properties of La0. 85Sr0. 15MnO3 powder as an electrode material for supercapacitor. J. Alloy. Compd. 675, 195–200 (2016)

    CAS  Google Scholar 

  144. C.T. Alexander, R.P. Forslund, K.P. Johnston, K.J. Stevenson, Tuning redox transitions via the inductive effect in LaNi1–x Fe x O3− δ perovskites for high-power asymmetric and symmetric pseudocapacitors. ACS Appl. Energy Mater. 2(9), 6558–6568 (2019)

    CAS  Google Scholar 

  145. A. Rezanezhad, E. Rezaie, L.S. Ghadimi, A. Hajalilou, E. Abouzari-Lotf, N. Arsalani, Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@ nitrogen-doped graphene oxide nanocomposites. Electrochim. Acta 335, 135699 (2020)

    CAS  Google Scholar 

  146. P.P. Ma, B. Zhu, N. Lei, Y.K. Liu, B. Yu, Q.L. Lu, G.H. Jiang, Effect of Sr substitution on structure and electrochemical properties of perovskite-type LaMn0. 9Ni0. 1O3 nanofibers. Mater. Lett. 252, 23–26 (2019)

    CAS  Google Scholar 

  147. Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu. J. Alloy. Compd. 638, 204–213 (2015)

    CAS  Google Scholar 

  148. Z.U. Rehman, M.A. Raza, A. Tariq, U.N. Chishti, M.F. Maqsood, N. Lee, A. Inam, La0. 75Sr0. 25Cr0. 5Mn0. 5O3 perovskite developed for supercapacitor applications. J. Energy Storage 32, 101951 (2020)

    Google Scholar 

  149. A. Galal, H.K. Hassan, T. Jacob, N.F. Atta, Enhancing the specific capacitance of SrRuO3 and reduced graphene oxide in NaNO3, H3PO4 and KOH electrolytes. Electrochim. Acta 260, 738–747 (2018)

    CAS  Google Scholar 

  150. A.K. Tomar, G. Singh, R.K. Sharma, Charge storage characteristics of mesoporous strontium titanate perovskite aqueous as well as flexible solid-state supercapacitor cell. J. Power. Sources 426, 223–232 (2019)

    CAS  Google Scholar 

  151. Y. Liu, J. Dinh, M.O. Tade, Z. Shao, Design of perovskite oxides as anion-intercalation-type electrodes for supercapacitors: cation leaching effect. ACS Appl. Mater. Interfaces 8(36), 23774–23783 (2016)

    CAS  PubMed  Google Scholar 

  152. G. George, S.L. Jackson, C.Q. Luo, D. Fang, D. Luo, D. Hu, Z. Luo, Effect of doping on the performance of high-crystalline SrMnO3 perovskite nanofibers as a supercapacitor electrode. Ceram. Int. 44(17), 21982–21992 (2018)

    CAS  Google Scholar 

  153. N. Lei, P. Ma, B. Yu, S. Li, J. Dai, G. Jiang, Anion-intercalated supercapacitor electrode based on perovskite-type SrB0. 875Nb0. 125O3 (B= Mn, Co). Chem. Eng. J. 421, 127790 (2021)

    CAS  Google Scholar 

  154. J.T.S. Irvine, Perovskite oxide anodes for SOFCs. Perovskite oxide for solid oxide fuel cells, (2009), pp. 167–182

  155. J.M. Tarascon, M. Armand, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific 414, 171–179 (2011)

    Google Scholar 

  156. K.W. Song, K.T. Lee, Characterization of Ba0. 5Sr0. 5M1− xFexO3− δ (M= Co and Cu) perovskite oxide cathode materials for intermediate temperature solid oxide fuel cells. Ceram. Int. 38(6), 5123–5131 (2012)

    CAS  Google Scholar 

  157. C.H.E.N. Tongyun, S.H.E.N. Liming, L.I.U. Feng, Z.H.U. Weichang, Q. Zhang, C.H.U. Xiangfeng, NdFeO3 as anode material for S/O2 solid oxide fuel cells. J. Rare Earths 30(11), 1138–1141 (2012)

    Google Scholar 

  158. F. Wang, D. Chen, Z. Shao, Sm0. 5Sr0. 5CoO3− δ-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. J. Power. Sources 216, 208–215 (2012)

    CAS  Google Scholar 

  159. R. Dittmer, E. Aulbach, W. Jo, K.G. Webber, J. Rödel, Large blocking force in Bi1/2Na1/2TiO3-based lead-free piezoceramics. Scripta Mater. 67(1), 100–103 (2012)

    CAS  Google Scholar 

  160. X.X. Wang, S.W. Or, K.H. Lam, H.L.W. Chan, P.K. Choy, P.C.K. Liu, Cymbal actuator fabricated using (Na 0.46 K 0.46 Li 0.08) NbO 3 lead-free piezoceramic. J. Electroceram. 16, 385–388 (2006)

    Google Scholar 

  161. S.K. Abbas, M.A. Aslam, M. Amir, S. Atiq, Z. Ahmed, S.A. Siddiqi, S. Naseem, Electrical impedance functionality and spin orientation transformation of nanostructured Sr-substituted BaMnO3 hexagonal perovskites. J. Alloy. Compd. 712, 720–731 (2017)

    CAS  Google Scholar 

  162. L.X. Zhang, W. Chen, X. Ren, Large recoverable electrostrain in Mn-doped (Ba, Sr) TiO3 ceramics. Appl. Phys. Lett. 85(23), 5658–5660 (2004)

    CAS  Google Scholar 

  163. S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, T. Kiguchi, Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes. J. Appl. Phys. 98(1) (2005)

  164. Z.Y. Shen, J.F. Li, Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure. J. Ceram. Soc. Jpn. 118(1382), 940–943 (2010)

    CAS  Google Scholar 

  165. D. Hu, K. Mori, X. Kong, K. Shinagawa, S. Wada, Q. Feng, Fabrication of [1 0 0]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials. J. Eur. Ceram. Soc. 34(5), 1169–1180 (2014)

    CAS  Google Scholar 

  166. T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn. J. Appl. Phys. 46(2L), L97 (2007)

    CAS  Google Scholar 

  167. M. Budimir, D. Damjanovic, N. Setter, Enhancement of the piezoelectric response of tetragonal perovskite single crystals by uniaxial stress applied along the polar axis: a free-energy approach. Phys. Rev. B 72(6), 064107 (2005)

    Google Scholar 

  168. A. Kumar, A. Sharma, R. Kumar, R. Vaish, Finite element study on acoustic energy harvesting using lead-free piezoelectric ceramics. J. Electron. Mater. 47, 1447–1458 (2018)

    CAS  Google Scholar 

  169. N.V. Volkov, Spintronics: manganite-based magnetic tunnel structures. Phys. Usp. 55(3), 250 (2012)

    CAS  Google Scholar 

  170. X. Li, J. Yang, First-principles design of spintronics materials. Natl. Sci. Rev. 3(3), 365–381 (2016)

    CAS  Google Scholar 

  171. H. Zabel, S.D. Bader, (eds.), Magnetic heterostructures: advances and perspectives in spinstructures and spintransport. (2007)

  172. J.Z. Sun, L. Krusin-Elbaum, P.R. Duncombe, A. Gupta, R.B. Laibowitz, Temperature dependent, non-ohmic magnetoresistance in doped perovskite manganate trilayer junctions. Appl. Phys. Lett. 70(13), 1769–1771 (1997)

    CAS  Google Scholar 

  173. M. Viret, M. Drouet, J. Nassar, J.P. Contour, C. Fermon, A. Fert, Low-field colossal magnetoresistance in manganite tunnel spin valves. Europhys. Lett. 39(5), 545 (1997)

    CAS  Google Scholar 

  174. M. Bowen, M. Bibes, A. Barthélémy, J.P. Contour, A. Anane, Y. Lemaıtre, A. Fert, Nearly total spin polarization in La 2/3 Sr 1/3 MnO 3 from tunneling experiments. Appl. Phys. Lett. 82(2), 233–235 (2003)

    CAS  Google Scholar 

  175. U. Lüders, M. Bibes, K. Bouzehouane, E. Jacquet, J.P. Contour, S. Fusil, J.-f. bobo, j. fontcuberta, a. barthélémy and a. fert. Appl. Phys. Lett 88, 082505 (2006)

    Google Scholar 

  176. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C Solid State Phys. 13(10), 1931 (1980)

    CAS  Google Scholar 

  177. I. Fina, X. Marti, D. Yi, J. Liu, J.H. Chu, C. Rayan-Serrao, R. Ramesh, Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 5(1), 4671 (2014)

    CAS  PubMed  Google Scholar 

  178. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Antiferromagnetic spintronics. Rev. Mod. Phys. 90(1), 015005 (2018)

    CAS  Google Scholar 

  179. J. Ryu, S. Lee, K.J. Lee, B.G. Park, Current-induced spin–orbit torques for spintronic applications. Adv. Mater. 32(35), 1907148 (2020)

    CAS  Google Scholar 

  180. S. Ning, H. Liu, J. Wu, F. Luo, Challenges and opportunities for spintronics based on spin orbit torque. Fundamental Res. 2(4), 535–538 (2022)

    CAS  Google Scholar 

  181. N.O. Urs, B. Mozooni, P. Mazalski, M. Kustov, P. Hayes, S. Deldar, J. McCord, Advanced magneto-optical microscopy: imaging from picoseconds to centimeters-imaging spin waves and temperature distributions. AIP Adv. 6(5) (2016)

  182. D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, W. Zhao, Antiferromagnetic spintronics: an overview and outlook. Fundamental Res. 2(4), 522–534 (2022)

    CAS  Google Scholar 

  183. N. Marati, R.G. Gupta, B. Vaithilingam, Multilayer ceramic capacitors crisis management in automotive industry. In 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), (IEEE, 2020) pp. 1–6

  184. J. Zhang, Z. Pan, F.F. Guo, W.C. Liu, H. Ning, Y.B. Chen, Y.F. Chen, Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0. 5Na0. 5TiO3-based lead-free piezoceramics. Nat. Commun. 6(1), 6615 (2015)

    CAS  PubMed  Google Scholar 

  185. J. Zhang, Z. Pan, P.X. Nie, Y.S. Cui, B. Yang, J. Chen, S.T. Zhang, Bi0. 5Na0. 5TiO3: ZnO lead-free piezoelectric composites with deferred thermal depolarization. Appl. Phys. Lett. 106(23) (2015)

  186. P. Peng, H. Nie, Z. Liu, W. Ren, F. Cao, G. Wang, X. Dong, Enhanced ferroelectric properties and thermal stability of Mn‐doped 0.96 (Bi0. 5 Na0. 5) TiO3‐0.04 BiAlO3 ceramics. J. Am. Ceram. Soc. 100(3), 1030–1036 (2017)

    CAS  Google Scholar 

  187. X. Liu, X. Tan, Giant strains in non-textured (Bi1/2Na1/2) TiO3-based lead-free ceramics. Adv. Mater. 28(3), 574–578 (2016)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Priyanka Thakur: Software, Visualization, Writing-original draft. Navdeep Sharma: Software, Resources, Writing-review & editing. Dinesh Pathak: Writing-review & editing. Pankaj Sharma: Writing-review & editing. Kamal Kishore: Writing-review & editing. Shashi Dhar: Writing-original draft. Madan Lal: Writing-original draft, Conceptualization, data curation, supervision, Writing-review & editing.

Corresponding author

Correspondence to Madan Lal.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, P., Sharma, N., Pathak, D. et al. State-of-art review on smart perovskites materials: properties and applications. emergent mater. 7, 667–694 (2024). https://doi.org/10.1007/s42247-024-00645-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-024-00645-w

Keywords

Navigation