Skip to main content
Log in

Novel CTAB functionalized graphene oxide for selenium removal: adsorption results and ANN & RSM modeling

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This study explored the potential of cetyltrimethylammonium bromide functionalized graphene oxide (CTAB@GO composite) to remove selenite and selenate from wastewater, given the health hazards related to selenium. It demonstrated outstanding adsorption capacities of 140 and 468 mg/g for selenite and selenate respectively, outperforming other GO composite adsorbents. The CTAB@GO composite was synthesized through a novel method involving sonication and dropwise addition of CTAB solution to GO dispersion. The composite was characterized using X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), indicating the successful incorporation of CH3-N+ groups on the surface of GO, which created an electrostatic force with the anionic SeO32− and SeO42− species. Both the Response Surface Methodology (RSM) and the Back Propagation Artificial Neural Network (BP-ANN) were utilized to model the removal process, with strong model fits shown by the R2 values for selenite and selenate removal. The Redlich-Peterson and Avrami models were the best-fitted models for adsorption isotherm and kinetics respectively. The study concluded that the CTAB@GO composite is an effective adsorbent for treating water containing selenite and selenate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The respective data is included in the paper and also available separately upon request.

References

  1. J. Stefaniak, A. Dutta, B. Verbinnen, M. Shakya, E.R. Rene, Selenium removal from mining and process wastewater: a systematic review of available technologies. 903–918 (2018). https://doi.org/10.2166/aqua.2018.109

  2. B. Verbinnen, C. Block, P. Lievens, A. Van Brecht, C. Vandecasteele, Simultaneous removal of molybdenum, antimony and selenium oxyanions from wastewater by adsorption on supported magnetite. 635–645 (2013). https://doi.org/10.1007/s12649-013-9200-8

  3. D.A. Roberts, N.A. Paul, S.A. Dworjanyn, Y. Hu, M.I. Bird, R. De Nys, Gracilaria waste biomass ( sampah rumput laut ) as a bioresource for selenium biosorption. 611–620 (2015). https://doi.org/10.1007/s10811-014-0346-y

  4. Z. Lu, J. Yu, H. Zeng, Q. Liu, Polyamine-modified magnetic graphene oxide nanocomposite for enhanced selenium removal. Sep. Purif. Technol. 183, 249–257 (2017). https://doi.org/10.1016/j.seppur.2017.04.010

    Article  CAS  Google Scholar 

  5. T. Nishimura, H. Hashimoto, M. Nakayama, Removal of Selenium (VI) from aqueous solution with polyamine ‐ type weakly basic ion exchange resin. 6395 (2007). https://doi.org/10.1080/01496390701513107

  6. S.L. Hockin, G.M. Gadd, Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial. Biofilms 69, 7063–7072 (2003). https://doi.org/10.1128/AEM.69.12.7063

    Article  CAS  Google Scholar 

  7. A. Geochemistry, I. Vol, Y.K. Kharaka, G. Ambats, T.S. Presser, U.S.G. Survey, M. Road, M. Park, Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes. A. Geochemistry, 11, 797–802 (1996). https://doi.org/10.1016/S0883-2927(96)00044-3

  8. F. Xu, S. Fan, Y. Li, J. Ma, L. Yang, S. Ma, Removal and recycling of aqueous selenite anions using cobalt-based metal–organic-framework coated on multi-walled carbon nanotubes composite membrane. J. Colloid Interface Sci. 653, 493–503 (2024). https://doi.org/10.1016/j.jcis.2023.09.105

    Article  CAS  PubMed  Google Scholar 

  9. M. Malhotra, M. Roy, P. Pal, A membrane-based green and low-cost system for ensuring safe drinking water in a selenium-affected region. J. Environ. Manage. 324, 116361 (2022). https://doi.org/10.1016/j.jenvman.2022.116361

    Article  CAS  PubMed  Google Scholar 

  10. Y. Bae, N.M. Crompton, N. Sharma, Y. Yuan, J.G. Catalano, D.E. Giammar, Impact of dissolved oxygen and pH on the removal of selenium from water by iron electrocoagulation. Water Res. 213, 118159 (2022). https://doi.org/10.1016/j.watres.2022.118159

    Article  CAS  PubMed  Google Scholar 

  11. W.H. Kuan, S.L. Lo, M.K. Wang, C.F. Lin, Removal of Se(IV) and Se(VI) from water by aluminum-oxide-coated sand. Water Res. 32, 915–923 (1998). https://doi.org/10.1016/S0043-1354(97)00228-5

    Article  CAS  Google Scholar 

  12. K.K. Panday, G. Prasad, V.N. Singh, Copper (II) removal from aqueous solutions by fly ash, Water Res. 19, 869–873 (1985). https://doi.org/10.1016/0043-1354(85)90145-9

  13. A. Genz, A. Kornmu, M. Jekel, Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide. 38, 3523–3530 (2004).https://doi.org/10.1016/j.watres.2004.06.006

  14. H. Yang, R. Xu, X. Xue, F. Li, G. Li, Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. 152, 690–698 (2008). https://doi.org/10.1016/j.jhazmat.2007.07.060

  15. G. Chen, F. Ge, Y. Wang, P. Liu, S. He, H. Shi, Z. Tan, Dissolved-selenium removal using magnetic nanoparticles: a state-of-the-art review. J. Water Process Eng. 53, 103831 (2023). https://doi.org/10.1016/j.jwpe.2023.103831

    Article  Google Scholar 

  16. A.D. Pournara, E. Moisiadis, V. Gouma, M.J. Manos, D.L. Giokas, Cotton fabric decorated by a Zr4+MOF for selective As(V) and Se(IV) removal from aqueous media. J. Environ. Chem. Eng. 10, 107705 (2022). https://doi.org/10.1016/j.jece.2022.107705

    Article  CAS  Google Scholar 

  17. T. Wang, H. Zhao, X. Zhao, D. Liu, Construction of defective zirconium-based metal–organic frameworks for enhanced removal of toxic selenite: performance and mechanism studies. J. Colloid Interface Sci. 647, 488–498 (2023). https://doi.org/10.1016/j.jcis.2023.05.159

    Article  CAS  PubMed  Google Scholar 

  18. K. Li, S. Zou, G. Jin, J. Yang, M. Dou, L. Qin, H. Su, F. Huang, Efficient removal of selenite in aqueous solution by MOF-801 and Fe3O4/MOF-801: adsorptive behavior and mechanism study. Sep. Purif. Technol. 296, 121384 (2022). https://doi.org/10.1016/j.seppur.2022.121384

    Article  CAS  Google Scholar 

  19. A.I.A. Ibrahim, M.S. Vohra, Mg-Fe-LDH for aquatic selenium treatment: adsorption RSM modeling, and machine learning neural network. Water Air Soil Pollut. 234, 433 (2023). https://doi.org/10.1007/s11270-023-06444-z

    Article  CAS  Google Scholar 

  20. G. Zelmanov, R. Semiat, Selenium removal from water and its recovery using iron (Fe 3 +) oxide / hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 103, 167–172 (2013). https://doi.org/10.1016/j.seppur.2012.10.037

    Article  CAS  Google Scholar 

  21. K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5, 3149–3171 (2013). https://doi.org/10.1039/c3nr33708a

    Article  CAS  PubMed  Google Scholar 

  22. Z. Niu, J. Chen, H.H. Hng, J. Ma, X. Chen, A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 24, 4144–4150 (2012). https://doi.org/10.1002/adma.201200197

    Article  CAS  PubMed  Google Scholar 

  23. F. Liu, S. Chung, G. Oh, T.S. Seo, Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS Appl. Mater. Interfaces 4, 922–927 (2012). https://doi.org/10.1021/am201590z

    Article  CAS  PubMed  Google Scholar 

  24. V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010). https://doi.org/10.1021/nn1008897

    Article  CAS  PubMed  Google Scholar 

  25. F. Sun, Y. Zhu, X. Liu, Z. Chi, Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): selenium removal mechanism. Environ. Sci. Pollut. Res. 30, 27560–27569 (2023). https://doi.org/10.1007/s11356-022-24226-8

    Article  CAS  Google Scholar 

  26. J. Chen, H. Wu, G. Sheng, H. Li, M. Li, X. Guo, H. Dong, Graphene oxide-mediated the reduction of U(VI), Re(VII), Se(VI) and Se(IV) by Fe(II) in aqueous solutions investigated via combined batch, DFT calculation and spectroscopic approaches. Chem. Eng. J. 433, 133844 (2022). https://doi.org/10.1016/j.cej.2021.133844

    Article  CAS  Google Scholar 

  27. W. Xiao, B. Yan, H. Zeng, Q. Liu, Dendrimer functionalized graphene oxide for selenium removal. Carbon N. Y. 105, 655–664 (2016). https://doi.org/10.1016/j.carbon.2016.04.057

    Article  CAS  Google Scholar 

  28. Y. Fu, J. Wang, Q. Liu, H. Zeng, Water-dispersible magnetic nanoparticle – graphene oxide composites for selenium removal. Carbon N. Y. 77, 710–721 (2014). https://doi.org/10.1016/j.carbon.2014.05.076

    Article  CAS  Google Scholar 

  29. T. Shojaeimehr, F. Rahimpour, M.A. Khadivi, M. Sadeghi, A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA). J. Ind. Eng. Chem. 20, 870–880 (2014). https://doi.org/10.1016/j.jiec.2013.06.017

    Article  CAS  Google Scholar 

  30. N. Sahan, T., Ceylan, H., Sahiner, N., Aktas, Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor. Bioresour. Technol. 4520–4526 (2010). https://doi.org/10.1016/j.biortech.2010.01.105

  31. X. Guo, J. Wang, Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using artificial neural networks. J. Hazard. Mater. 402, 123709 (2021). https://doi.org/10.1016/j.jhazmat.2020.123709

    Article  CAS  PubMed  Google Scholar 

  32. J.A. Rodríguez-Romero, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, D.A. De Haro-Del Rio, L.M. González-Rodríguez, A. Bonilla-Petriciolet, C.J. Duran-Valle, K.I. Camacho-Aguilar, Preparation of a new adsorbent for the removal of arsenic and its simulation with artificial neural network-based adsorption models. J. Environ. Chem. Eng. 8, 103928 (2020). https://doi.org/10.1016/j.jece.2020.103928

    Article  CAS  Google Scholar 

  33. P.L. Narayana, A.K. Maurya, X.S. Wang, M.R. Harsha, O. Srikanth, A.A. Alnuaim, W.A. Hatamleh, A.A. Hatamleh, K.K. Cho, U.M.R. Paturi, N.S. Reddy, Artificial neural networks modeling for lead removal from aqueous solutions using iron oxide nanocomposites from bio-waste mass. Environ. Res. 199, 111370 (2021). https://doi.org/10.1016/j.envres.2021.111370

    Article  CAS  PubMed  Google Scholar 

  34. N. Jaafarzadeh, M. Ahmadi, H. Amiri, M.H. Yassin, S.S. Martinez, Predicting Fenton modification of solid waste vegetable oil industry for arsenic removal using artificial neural networks. J. Taiwan Inst. Chem. Eng. 43, 873–878 (2012). https://doi.org/10.1016/j.jtice.2012.05.008

    Article  CAS  Google Scholar 

  35. D. Bingöl, M. Hercan, S. Elevli, E. Kiliç, Comparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cumin. Bioresour. Technol. 112, 111–115 (2012). https://doi.org/10.1016/j.biortech.2012.02.084

    Article  CAS  PubMed  Google Scholar 

  36. M.H. Dehghani, K. Yetilmezsoy, M. Salari, Z. Heidarinejad, M. Yousefi, M. Sillanpää, Adsorptive removal of cobalt(II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: modelling and optimization based on response surface methodology and artificial neural network. J. Mol. Liq. 299, (2020). https://doi.org/10.1016/j.molliq.2019.112154

  37. Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, A.W. Mango, H. Darmokoesoemo, B.A. Widyaningrum, M. Iqbal, H.S. Kusuma, Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater. J. Mater. Res. Technol. 18, 2896–2909 (2022). https://doi.org/10.1016/j.jmrt.2022.03.153

    Article  CAS  Google Scholar 

  38. T.J. Gray, P.W. Darby, The relationship between adsorption kinetics and the defect solid state. J. Phys. Chem. 60, 201–209 (1956). https://doi.org/10.1021/j150536a016

    Article  CAS  Google Scholar 

  39. P. Supaphol, Application of the Avrami, Tobin, Malkin, and Urbanovici - Segal macrokinetic models to isothermal crystallization of syndiotactic polypropylene. Thermochim. Acta 370, 37–48 (2001). https://doi.org/10.1016/S0040-6031(00)00767-X

    Article  CAS  Google Scholar 

  40. A.K. Sheridan, J. Anwar, Kinetics of the solid-state phase transformation of form β to γ of sulfanilamide using time-resolved energy-dispersive x-ray diffraction. Chem. Mater. 8, 1042–1050 (1996). https://doi.org/10.1021/cm950349z

    Article  CAS  Google Scholar 

  41. A. Ibrahim, M.S. Vohra, S.A. Bahadi, S.A. Onaizi, M.H. Essa, T. Mohammed, Heavy metals adsorption onto graphene oxide: effect of mixed systems and response surface methodology modeling. Desalin. Water Treat. 266, 78–90 (2022). https://doi.org/10.5004/dwt.2022.28615

    Article  CAS  Google Scholar 

  42. P. Liu, Y. Huang, L. Wang, A facile synthesis of reduced graphene oxide with Zn powder under acidic condition. Mater. Lett. 91, 125–128 (2013). https://doi.org/10.1016/j.matlet.2012.09.085

    Article  CAS  Google Scholar 

  43. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectros. Relat. Phenomena. 195, 145–154 (2014). https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  44. Y.J. Yang, W. Li, CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens. Bioelectron. 56, 300–306 (2014). https://doi.org/10.1016/j.bios.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  45. J. Su, S. He, Z. Zhao, X. Liu, H. Li, Efficient preparation of cetyltrimethylammonium bromide-graphene oxide composite and its adsorption of Congo red from aqueous solutions. Colloids Surfaces A Physicochem. Eng. Asp. 554, 227–236 (2018). https://doi.org/10.1016/j.colsurfa.2018.06.048

    Article  CAS  Google Scholar 

  46. M. Karakoti, R. Jangra, S. Pandey, P.S. Dhapola, S. Dhali, S. Mahendia, P.K. Singh, N.G. Sahoo, Binder-free reduced graphene oxide as electrode material for efficient supercapacitor with aqueous and polymer electrolytes. High Perform. Polym. 32, 175–182 (2020). https://doi.org/10.1177/0954008320905659

    Article  CAS  Google Scholar 

  47. Y. Qiu, W. Li, G. Li, Y. Hou, L. Zhou, H. Li, M. Liu, F. Ye, X. Yang, Y. Zhang, Polyaniline-modified cetyltrimethylammonium bromide-graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries. Nano Res. 7, 1355–1363 (2014). https://doi.org/10.1007/s12274-014-0500-5

    Article  CAS  Google Scholar 

  48. P. Abraham, S. Renjini, T.E. Mary Nancy, V. AnithaKumary, Electrochemical synthesis of thin-layered graphene oxide-poly(CTAB). J. Appl. Electrochem. 50, 41–50 (2020). https://doi.org/10.1007/s10800-019-01367-2

    Article  CAS  Google Scholar 

  49. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 74, 25–48 (2017). https://doi.org/10.1016/j.jtice.2017.01.024

    Article  CAS  Google Scholar 

  50. A.M.M. Vargas, A.L. Cazetta, M.H. Kunita, T.L. Silva, V.C. Almeida, Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): study of adsorption isotherms and kinetic models. Chem. Eng. J. 168, 722–730 (2011). https://doi.org/10.1016/j.cej.2011.01.067

    Article  CAS  Google Scholar 

  51. P.C. Bandara, J.V.D. Perez, E.T. Nadres, R.G. Nannapaneni, K.J. Krakowiak, D.F. Rodrigues, Graphene oxide nanocomposite hydrogel beads for removal of selenium in contaminated water. ACS Appl. Polym. Mater. 1, 2668–2679 (2019). https://doi.org/10.1021/acsapm.9b00612

    Article  CAS  Google Scholar 

  52. R. Cao, M. Fan, J. Hu, W. Ruan, X. Wu, X. Wei, Artificial intelligence based optimization for the Se(IV) removal from aqueous solution by reduced graphene oxide-supported nanoscale zero-valent iron composites. Materials (Basel) 11, 1–19 (2018). https://doi.org/10.3390/ma11030428

    Article  CAS  Google Scholar 

  53. A.S. Al-Gorair, A. Sayed, G.A. Mahmoud, Engineered superabsorbent nanocomposite reinforced with cellulose nanocrystals for remediation of basic dyes: isotherm, kinetic, and thermodynamic studies. Polymers (Basel) 14, (2022). https://doi.org/10.3390/polym14030567

  54. S.M. Abdelbasir, M.A.A. Khalek, From waste to waste: iron blast furnace slag for heavy metal ions removal from aqueous system. Environ. Sci. Pollut. Res. 29, 57964–57979 (2022). https://doi.org/10.1007/s11356-022-19834-3

    Article  CAS  Google Scholar 

  55. M.M. Farahat, M.A. Abdel Khalek, M.M.S. Sanad, Affordable and reliable cationic-anionic magnetic adsorbent: processing, characterization, and heavy metals removal. J. Clean. Prod. 360, 132178 (2022). https://doi.org/10.1016/j.jclepro.2022.132178

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the necessary support for this work by the King Fahd University of Petroleum & Minerals (KFUPM) and the Civil and Environmental Engineering Department & the Chemical Engineering Department at KFUPM, including the lab facilities. This work was supported by the Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum and Minerals (KFUPM) in the terms of Research Grant #DF191022.

Author information

Authors and Affiliations

Authors

Contributions

The first author Ahmed I. Ibrahim provided the idea for this work, prepared the material, conducted the experiments, and wrote the first draft. The second author Sagheer A. Onaizi provided the idea for this work, prepared the material, supervised the treatment part of the experimental work, and extensively edited the first & final drafts. The corresponding author Muhammad S. Vohra provided the idea for this work, supervised the treatment part of the experimental work, and extensively edited the first and final drafts.

Corresponding author

Correspondence to Muhammad S. Vohra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest for this paper.

Competing interests

The authors declare that they have no competing interests for this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.I., Onaizi, S.A. & Vohra, M.S. Novel CTAB functionalized graphene oxide for selenium removal: adsorption results and ANN & RSM modeling. emergent mater. 7, 547–564 (2024). https://doi.org/10.1007/s42247-023-00570-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00570-4

Keywords

Navigation