Skip to main content
Log in

Harnessing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for enhancing H2S scavenging capacity of waste vegetable oil-based drilling fluids

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The release of toxic hydrogen sulfide gas from subsurface oil wells during oil and gas drilling operations leads to serious health and safety problems for both the drilling structures and working personnel. The implementation of controls and mitigation techniques is vital to abating the high health and economic risks associated with H2S exposure. The effective removal of H2S gas in-situ during drilling operations is key to limiting these risks. On the other hand, utilizing waste cooking oils for formulating oil-based fluids will transfer these waste oils into valuable commodities, and will make the drilling operations greener and more sustainable. Thus, waste cooking oil was utilized in this study to formulate oil-based drilling mud (OBM). The mud contained zeolitic imidazolate framework-8 (ZIF-8) NPs as an emerging material with H2S scavenging capability. The synthesized ZIF-8 NPs were characterized by XRD, FT-IR, TGA, and the nitrogen (N2) sorption isotherm. The influence of the ZIF-8 NPs on the H2S scavenging capacity and viscosity of this green and sustainable OBM were investigated and compared to the base mud without ZIF-8 NPs. The incorporation of ZIF-8 NPs significantly enhanced the H2S scavenging capacity of the drilling fluid. The breakthrough and saturation capacities of the drilling fluid were enhanced by 150 and 245% with the addition of ZIF-8 NPs. The plastic and apparent viscosities exhibited similar behavior and were not compromised by the incorporation of ZIF-8 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available upon reasonable requests.

References

  1. M. Murtaza, S.A. Alarifi, A. Abozuhairah, M. Mahmoud, S.A. Onaizi, M. Al-Ajmi, Optimum selection of H2S scavenger in light-weight and heavy-weight water-based drilling fluids. ACS Omega 6, 24919–24930 (2021). https://doi.org/10.1021/acsomega.1c03792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. E. Sunde, H. Olsen, Removal of H2S in Drilling Mud. U.S. Patent 6,365,053 B1, (2002).

  3. J. Buller, J.F. Carpenter, H2S Scavengers for Non-Aqueous Systems, Proceedings - SPE International Symposium on Oilfield Chemistry. 575–579 (2005). https://doi.org/10.2118/93353-MS.

  4. R.A. Marriott, P. Pirzadeh, J.J. Marrugo-Hernandez, S. Raval, Hydrogen sulfide formation in oil and gas. Can. J. Chem. 94, 406–413 (2016). https://doi.org/10.1139/cjc-2015-0425

    Article  CAS  Google Scholar 

  5. D.T. Oakes, Method for reducing hydrogen sulfide concentrations in well fluids, U.S. Patent 4,473,115 A, (1984).

  6. H. Dembicki, Jr., Interpreting crude oil and natural gas data, In: Practical petroleum geochemistry for exploration and production, Elsevier, 2017: pp. 135–188. https://doi.org/10.1016/B978-0-12-803350-0.00004-0

  7. S.A. Onaizi, R. Shawabkeh, Z.O. Malaibari, N.S. Abu-ghander, Method of sweetening hydrocarbon gas from hydrogen sulfide, (2020). https://patents.google.com/patent/US20200197865A1/en. Accessed 27 Mar 2023

  8. L.E. Fletcher, Potential explosive hazards from hydrogen sulfide production in ship ballast and sewage tanks., (1998). https://apps.dtic.mil/sti/citations/ADA360622. Accessed 5 Apr 2023

  9. Engineering ToolBox, Thermophysical Properties of Hydrogen sulfide, (2018). https://www.engineeringtoolbox.com/hydrogen-sulfide-H2S-properties-d_2034.html. Accessed 5 Apr 2023

  10. J. Orlikowski, A. Jazdzewska, I. Uygur, R. Gospos, T. Olczak, K. Darowicki, Effect of wet hydrogen sulfide on carbon steels degradation in refinery based on case study. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07154-0

    Article  Google Scholar 

  11. W.C. Browning, H.F. Young, Process for Scavenging Hydrogen Sulfide in Aqueous Drilling Fluids and Method of Preventing Metallic Corrosion of Subterranean Well Drilling Apparatuses. U.S. Patent 3,928,211 A, (1975).

  12. OSHA, Hydrogen Sulfide Hazards, Occupational Safety and Health Administration. (2005). https://www.osha.gov/hydrogen-sulfide/hazards. Accessed 27 Mar 2023

  13. J.D. Ray, B.V. Randall, J.C. Parker, Use of reactive iron oxide to remove H2S from drilling fluid. J. Petrol. Technol. 31, 797–801 (1979). https://doi.org/10.2118/7498-PA

    Article  CAS  Google Scholar 

  14. M.K. Amosa, I. A. Mohammed, S.A. Yaro, Sulphide Scavengers in Oil and Gas Industry: A Review. Nafta, 61, 85− 92 (2010).

  15. A. Ahmed, S.A. Onaizi, S. Elkatatny, Improvement of hydrogen sulfide scavenging via the addition of monoethanolamine to water-based drilling fluids. ACS Omega 7, 28361–28368 (2022). https://doi.org/10.1021/acsomega.2c02890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Kafashi, M. Rasaei, G. Karimi, Effects of sugarcane and polyanionic cellulose on rheological properties of drilling mud: An experimental approach. Egypt. J. Pet. 26, 371–374 (2017). https://doi.org/10.1016/j.ejpe.2016.05.009

    Article  Google Scholar 

  17. R. Saboori, S. Sabbaghi, A. Kalantariasl, D. Mowla, Improvement in filtration properties of water-based drilling fluid by nanocarboxymethyl cellulose/polystyrene core–shell nanocomposite. J. Pet. Explor. Prod. Technol. 8, 445–454 (2018). https://doi.org/10.1007/s13202-018-0432-9

    Article  CAS  Google Scholar 

  18. A. Jinasena, R. Sharma, Estimation of mud losses during the removal of drill cuttings in oil drilling. SPE J. 25, 2162–2177 (2020). https://doi.org/10.2118/201230-PA

    Article  CAS  Google Scholar 

  19. J. Yuan, Q. Li, J. Shen, K. Huang, G. Liu, J. Zhao, J. Duan, W. Jin, Hydrophobic-functionalized ZIF-8 nanoparticles incorporated PDMS membranes for high-selective separation of propane/nitrogen. Asia-Pac. J. Chem. Eng. 12, 110–120 (2017). https://doi.org/10.1002/APJ.2058

    Article  CAS  Google Scholar 

  20. M. Bergaoui, M. Khalfaoui, A. Awadallah-F, S. Al-Muhtaseb, A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons. J. Nat. Gas Sci. Eng. 96, (2021). https://doi.org/10.1016/J.JNGSE.2021.104289

  21. Q. Song, S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci. 5, 8359–8369 (2012). https://doi.org/10.1039/C2EE21996D

    Article  CAS  Google Scholar 

  22. C. Duan, Y. Yu, H. Hu, Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis. Green Energy Environ. 7, 3–15 (2022). https://doi.org/10.1016/J.GEE.2020.12.023

    Article  CAS  Google Scholar 

  23. A. Samadi-Maybodi, S. Ghasemi, H. Ghaffari-Rad, A novel sensor based on Ag-loaded zeolitic imidazolate framework-8 nanocrystals for efficient electrocatalytic oxidation and trace level detection of hydrazine. Sens. Actuators B Chem. 220, 627–633 (2015). https://doi.org/10.1016/J.SNB.2015.05.127

    Article  CAS  Google Scholar 

  24. A. Matsuoka, H. Matsumura, M. Odaka, N. Ogawa, T. Tanno, The transitional transmittance response of ZIF-8 gas adsorption observed using terahertz waves. E-J. Surf. Sci. Nanotech. 16, 142–144 (2018). https://doi.org/10.1380/EJSSNT.2018.142

    Article  CAS  Google Scholar 

  25. E.E. Sann, Y. Pan, Z. Gao, S. Zhan, F. Xia, Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep. Purif. Technol. 206, 186–191 (2018). https://doi.org/10.1016/J.SEPPUR.2018.04.027

    Article  CAS  Google Scholar 

  26. A. Katende, N.V. Boyou, I. Ismail, D.Z. Chung, F. Sagala, N. Hussein, M.S. Ismail, Improving the performance of oil based mud and water based mud in a high temperature hole using nanosilica nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 577, 645–673 (2019). https://doi.org/10.1016/J.COLSURFA.2019.05.088

    Article  CAS  Google Scholar 

  27. M.I. Abduo, A.S. Dahab, H. Abuseda, A.M. AbdulAziz, M.S. Elhossieny, Comparative study of using water-based mud containing multiwall carbon nanotubes versus oil-based mud in HPHT fields. Egypt. J. Pet. 25, 459–464 (2016). https://doi.org/10.1016/J.EJPE.2015.10.008

    Article  Google Scholar 

  28. P.K. Jha, V. Mahto, V.K. Saxena, Study the Rheological and Filtration Properties of Oil-in-Water Emulsion for its Application in Oil and Gas Well Drilling. J. Pet. Sci. Eng. 3, 25–30 (2013). https://www.stmjournals.com/index.php?journal=JoPET&page=article&op=view&path%5B%5D=4107. Accessed 8 July 2023.

  29. A.A. Sulaimon, B.J. Adeyemi, M. Rahimi, Performance enhancement of selected vegetable oil as base fluid for drilling HPHT formation. J. Pet. Sci. Eng. 152, 49–59 (2017). https://doi.org/10.1016/j.petrol.2017.02.006

    Article  CAS  Google Scholar 

  30. O.E. Agwu, A.N. Okon, F.D. Udoh, A comparative study of diesel oil and soybean oil as oil-based drilling mud. J. Pet. Eng. 2015, 1–10 (2015). https://doi.org/10.1155/2015/828451

    Article  Google Scholar 

  31. Y. Li, K. Zhou, M. He, J. Yao, Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Microporous Mesoporous Mater. 234, 287–292 (2016). https://doi.org/10.1016/j.micromeso.2016.07.039

    Article  CAS  Google Scholar 

  32. M. He, J. Yao, Q. Liu, K. Wang, F. Chen, H. Wang, Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous Mesoporous Mater. 184, 55–60 (2014). https://doi.org/10.1016/j.micromeso.2013.10.003

    Article  CAS  Google Scholar 

  33. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319(2008), 939–943 (1979). https://doi.org/10.1126/SCIENCE.1152516/SUPPL_FILE/BANERJEE.SOM.PDF

    Article  Google Scholar 

  34. Y. Zhang, Y. Jia, L. Hou, Synthesis of zeolitic imidazolate framework-8 on polyester fiber for PM2.5 removal. RSC Adv. 8, 31471–31477 (2018). https://doi.org/10.1039/c8ra06414h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. H. Kaur, G.C. Mohanta, V. Gupta, D. Kukkar, S. Tyagi, Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J. Drug Deliv. Sci. Technol. 41, 106–112 (2017). https://doi.org/10.1016/j.jddst.2017.07.004

    Article  CAS  Google Scholar 

  36. M. Davoodi, F. Davar, M.R. Rezayat, M.T. Jafari, M. Bazarganipour, A.E. Shalan, Synthesis and characterization of a new ZIF-67@MgAl2O4nanocomposite and its adsorption behaviour. RSC Adv. 11, 13245–13255 (2021). https://doi.org/10.1039/d1ra01056e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U. S. A. 103, 10186–10191 (2006). https://doi.org/10.1073/PNAS.0602439103/SUPPL_FILE/02439SUPPAPPENDIX.PDF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 47, 2071–2073 (2011). https://doi.org/10.1039/c0cc05002d

    Article  CAS  Google Scholar 

  39. A. Schejn, L. Balan, V. Falk, L. Aranda, G. Medjahdi, R. Schneider, Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm 16, 4493–4500 (2014). https://doi.org/10.1039/c3ce42485e

    Article  CAS  Google Scholar 

  40. L.S. Lai, Y.F. Yeong, N.C. Ani, K.K. Lau, A.M. Shariff, Effect of synthesis parameters on the formation of zeolitic imidazolate framework 8 (ZIF-8) nanoparticles for CO2 adsorption. Part. Sci. Technol. 32, 520–528 (2014). https://doi.org/10.1080/02726351.2014.920445

    Article  CAS  Google Scholar 

  41. W. Cao, M. Han, L. Qin, Q. Jiang, J. Xu, Z. Lu, Y. Wang, Synthesis of zeolitic imidazolate framework-67 nanocube wrapped by graphene oxide and its application for supercapacitors. J. Solid State Electrochem. 23, 325–334 (2019). https://doi.org/10.1007/s10008-018-4138-1

    Article  CAS  Google Scholar 

  42. W. Sun, X. Zhai, L. Zhao, Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 289, 59–64 (2016). https://doi.org/10.1016/J.CEJ.2015.12.076

    Article  CAS  Google Scholar 

  43. A.M. Alkadhem, M.A.A. Elgzoly, A. Alshami, S.A. Onaizi, Kinetics of CO2 capture by novel amine-functionalized magnesium oxide adsorbents. Colloids Surf A Physicochem. Eng. Asp. 616, 126258 (2021). https://doi.org/10.1016/j.colsurfa.2021.126258

    Article  CAS  Google Scholar 

  44. M.K. Al-Sakkaf, S.A. Onaizi, Rheology, characteristics, stability, and pH-responsiveness of biosurfactant-stabilized crude oil/water nanoemulsions. Fuel 307, 121845 (2022). https://doi.org/10.1016/J.FUEL.2021.121845

    Article  CAS  Google Scholar 

  45. S.A. Lateef, O.O. Ajumobi, S.A. Onaizi, Enzymatic desulfurization of crude oil and its fractions: a mini review on the recent progresses and challenges. Arab. J. Sci. Eng. 44, 5181–5193 (2019). https://doi.org/10.1007/S13369-019-03800-2/METRICS

    Article  CAS  Google Scholar 

  46. S.A. Onaizi, Demulsification of crude oil/water nanoemulsions stabilized by rhamnolipid biosurfactant using enzymes and pH-swing. Sep. Purif. Technol. 259, 118060 (2021). https://doi.org/10.1016/J.SEPPUR.2020.118060

    Article  CAS  Google Scholar 

  47. S.A. Onaizi, L. He, A.P.J. Middelberg, The construction, fouling and enzymatic cleaning of a textile dye surface. J. Colloid Interface Sci. 351, 203–209 (2010). https://doi.org/10.1016/J.JCIS.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  48. S.A. Onaizi, A.S. Malcolm, L. He, A.P.J. Middelberg, Directed disassembly of an interfacial rubisco protein network. Langmuir 23, 6336–6341 (2007). https://doi.org/10.1021/LA700378Q/ASSET/IMAGES/LARGE/LA700378QF00007.JPEG

    Article  CAS  PubMed  Google Scholar 

  49. S.A. Onaizi, L. He, A.P.J. Middelberg, Proteolytic cleaning of a surface-bound rubisco protein stain. Chem. Eng. Sci. 64, 3868–3878 (2009). https://doi.org/10.1016/J.CES.2009.05.027

    Article  CAS  Google Scholar 

  50. L. He, A.S. Malcolm, M. Dimitrijev, S.A. Onaizi, H.H. Shen, S.A. Holt, A.F. Dexter, R.K. Thomas, A.P.J. Middelberg, Cooperative tuneable interactions between a designed peptide biosurfactant and positional isomers of SDOBS at the air - Water interface. Langmuir 25, 4021–4026 (2009). https://doi.org/10.1021/LA802825C/ASSET/IMAGES/LARGE/LA-2008-02825C_0007.JPEG

    Article  CAS  PubMed  Google Scholar 

  51. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Self-assembly of a surfactin nanolayer at solid–liquid and air–liquid interfaces. Eur. Biophys. J. 45, 331–339 (2016). https://doi.org/10.1007/S00249-015-1099-5/FIGURES/5

    Article  CAS  PubMed  Google Scholar 

  52. S.A. Onaizi, M.S. Nasser, N.M.A. Al-Lagtah, Benchmarking the Self-assembly of surfactin biosurfactant at the liquid-air interface to those of synthetic surfactants. J. Surfactants Deterg. 19, 645–652 (2016). https://doi.org/10.1007/S11743-016-1796-9/FIGURES/3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. S.A. Onaizi, Dynamic surface tension and adsorption mechanism of surfactin biosurfactant at the air–water interface. Eur. Biophys. J. 47, 631–640 (2018). https://doi.org/10.1007/S00249-018-1289-Z/FIGURES/8

    Article  CAS  PubMed  Google Scholar 

  54. S.A. Onaizi, M. Alsulaimani, M.K. Al-Sakkaf, S.A. Bahadi, M. Mahmoud, A. Alshami, Crude oil/water nanoemulsions stabilized by biosurfactant: Stability and pH-Switchability. J. Pet. Sci. Eng. 198, 108173 (2021). https://doi.org/10.1016/J.PETROL.2020.108173

    Article  CAS  Google Scholar 

  55. A.M. Alkadhem, M.A.A. Elgzoly, S.A. Onaizi, Novel amine-functionalized magnesium oxide adsorbents for CO2 capture at ambient conditions. J. Environ. Chem. Eng. 8, 103968 (2020). https://doi.org/10.1016/j.jece.2020.103968

    Article  CAS  Google Scholar 

  56. S.A. Onaizi, Statistical analyses of the effect of rhamnolipid biosurfactant addition on the enzymatic removal of Bisphenol A from wastewater. Biocatal. Agric. Biotechnol. 32, 101929 (2021). https://doi.org/10.1016/J.BCAB.2021.101929

    Article  CAS  Google Scholar 

  57. M. Alshabib, S.A. Onaizi, Effects of surface active additives on the enzymatic treatment of phenol and its derivatives: a mini review. Curr. Pollut. Rep. 5, 52–65 (2019). https://doi.org/10.1007/S40726-019-00105-8/TABLES/3

    Article  CAS  Google Scholar 

  58. M. Alshabib, S.A. Onaizi, Enzymatic remediation of bisphenol a from wastewaters: effects of biosurfactant, anionic, cationic, nonionic, and polymeric additives. Water Air Soil Pollut. 231, 1–13 (2020). https://doi.org/10.1007/S11270-020-04806-5/TABLES/1

    Article  Google Scholar 

  59. A. Hezam, Q.A. Drmosh, D. Ponnamma, M.A. Bajiri, M. Qamar, K. Namratha, M. Zare, M.B. Nayan, S.A. Onaizi, K. Byrappa, Strategies to enhance ZnO photocatalyst’s performance for water treatment: a comprehensive review. Chem. Record. 22, e202100299 (2022). https://doi.org/10.1002/TCR.202100299

    Article  CAS  Google Scholar 

  60. H.S. Almarouf, M.S. Nasser, M.J. Al-Marri, M. Khraisheh, S.A. Onaizi, Demulsification of stable emulsions from produced water using a phase separator with inclined parallel arc coalescing plates. J. Pet. Sci. Eng. 135, 16–21 (2015). https://doi.org/10.1016/J.PETROL.2015.08.005

    Article  CAS  Google Scholar 

  61. S.A. Onaizi, M. Alshabib, The degradation of bisphenol A by laccase: Effect of biosurfactant addition on the reaction kinetics under various conditions. Sep. Purif. Technol. 257, 117785 (2021). https://doi.org/10.1016/J.SEPPUR.2020.117785

    Article  CAS  Google Scholar 

  62. E.E. Okoro, A.A. Zuokumor, I.S. Okafor, K.C. Igwilo, K.B. Orodu, Determining the optimum concentration of multiwalled carbon nanotubes as filtrate loss additive in field-applicable mud systems. J. Pet. Explor. Prod. Technol. 10, 429–438 (2020). https://doi.org/10.1007/S13202-019-0740-8/FIGURES/9

    Article  CAS  Google Scholar 

  63. S.A. Onaizi, M.A. Gawish, M. Murtaza, I. Gomaa, Z. Tariq, M. Mahmoud, H 2 S scavenging capacity and rheological properties of water-based drilling muds. ACS Omega 5, 30729–30739 (2020). https://doi.org/10.1021/acsomega.0c04953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. A. Mirzaei-Paiaman, M. Masihi, A.M. Paiaman, M.K.G. Al-Askari, B. Salmani, B.D. Al-Anazi, M. Masihi, Effect of Drilling Fluid Properties on Rate of Penetration, (2009). https://www.researchgate.net/publication/267959339

  65. N.V. Boyou, I. Ismail, W.R. Wan Sulaiman, A. Sharifi Haddad, N. Husein, H.T. Hui, K. Nadaraja, Experimental investigation of hole cleaning in directional drilling by using nano-enhanced water-based drilling fluids. J. Pet. Sci. Eng. 176, 220–231 (2019). https://doi.org/10.1016/J.PETROL.2019.01.063

    Article  CAS  Google Scholar 

  66. A.H. Salih, H. Bilgesu, Investigation of Rheological and Filtration Properties of Water-Based Drilling Fluids Using Various Anionic Nanoparticles, SPE Western Regional Meeting Proceedings. 2017-April (2017) 837–857. https://doi.org/10.2118/185638-MS

  67. A. Bardhan, R. Gandhi, H. Kesarwani, S. Vats, S. Sharma, S. Kumar, Performance evaluation of novel silane coated nanoparticles as an additive for high-performance drilling fluid applications, (2023). https://doi.org/10.2523/IPTC-22878-MS

  68. S.R. Smith, R. Rafati, A. Sharifi Haddad, A. Cooper, H. Hamidi, Application of aluminium oxide nanoparticles to enhance rheological and filtration properties of water based muds at HPHT conditions. Colloids Surf A Physicochem. Eng. Asp. 537, 361–371 (2018). https://doi.org/10.1016/J.COLSURFA.2017.10.050

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Research Oversight and Coordination (DROC) at King Fahd University of Petroleum and Minerals (KFUPM) in the terms of Research Grant #DF191027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagheer A. Onaizi.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iddrisu, M., Bahadi, S.A., Al-Sakkaf, M.K. et al. Harnessing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for enhancing H2S scavenging capacity of waste vegetable oil-based drilling fluids. emergent mater. 7, 591–602 (2024). https://doi.org/10.1007/s42247-023-00535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00535-7

Keywords

Navigation