Skip to main content

Advertisement

Log in

5-Azacytidine incorporated chitosan/collagen/gold nanoparticle matrix preparation and characterization with potential to repair myocardial infarction

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

With cardiovascular disease has remained a leading cause of death and treatment modalities for myocardial tissue repair have provided promise and life to damaged heart tissue patients. Biomaterials, including natural and synthetic polymers, have shown effectiveness towards cell differentiation and proliferation. Small amounts of collagen in the matrix increase the biocompatibility and biodegradability, and thus the matrix employed in the study utilized a composition consisting of chitosan (CNPs) and collagen (Coll). In this study, gold nanoparticles (GNP) were added to the matrix to enhance the electrical conductivity to improve the heart function. 5-Azacitidine (5-Aza) was incorporated into the matrix to induce myogenic differentiation. The prepared matrix of GNP-5-Aza@CNPs@Coll thus had a hydrodynamic diameter of 382 nm and an electrical conductivity of 120.2 μs/cm. Loading of 5-Aza and gold nanoparticles in the matrix has been confirmed through HPLC and ICP-OES analyses, while FTIR bands confirmed the fingerprint of each component of composite. Biocompatibility of the matrix has been established through hemolysis assays. Animal studies revealed promising application of the matrix as injectable formulations for myocardial tissue engineering. In essence, the study opens a promise for otherwise challenged myocardial tissue engineering, through appropriate combination of chitosan, collagen, 5-Aza, and gold nanoparticles, leading to a biocompatible and potentially biodegradable matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the study are available on reasonable request.

References

  1. A.E. Azab, Acute myocardial infarction risk factors and correlation of its markers with serum lipids. J. Appl. Biotechnol. Bioeng. 3(4), 00075 (2017)

    Google Scholar 

  2. J. Qin, S. Zhou, Z. Li, Y. Chen, Q. Qin, T. Ai, Combination of magnetic resonance imaging and targeted contrast agent for the diagnosis of myocardial infarction. Exp. Ther. Med. 16(4), 3303–3308 (2018). https://doi.org/10.3892/etm.2018.6600

    Article  CAS  Google Scholar 

  3. J. Bejarano, M. Navarro-Marquez, F. Morales-Zavala, J.O. Morales, I. Garcia-Carvajal, E. Araya-Fuentes, Y. Flores, H.E. Verdejo, P.F. Castro, S. Lavandero, M.J. Kogan, Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 8(17), 4710–4732 (2018). https://doi.org/10.7150/thno.26284

    Article  CAS  Google Scholar 

  4. P.-M. Boarescu, I. Chirilă, A.E. Bulboacă, I.C. Bocșan, R.M. Pop, D. Gheban, S.D. Bolboacă, Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxid. Med. Cell. Longev. 2019, 7847142 (2019). https://doi.org/10.1155/2019/7847142

    Article  CAS  Google Scholar 

  5. D.J. Lundy, K.-H. Chen, E.K.-W. Toh, P.C.-H. Hsieh, Distribution of systemically administered nanoparticles reveals a size-dependent effect immediately following cardiac ischaemia-reperfusion injury. Sci. Rep. 6(1), 1–10 (2016)

    Article  Google Scholar 

  6. Qian Q, Qian H, Zhang X, Zhu W, Yan Y, Ye S, Peng X, Li W, Xu Z, Lingyun Sun, Wenrong Xu, 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase. Stem Cells Dev. 21(1), 67–75 (2012)

  7. Perea-Gil I, Prat-Vidal C, Bayes-Genis A, In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin, Stem Cell Res. Ther. 6(1), 1-25 (2015)

  8. S. Farzamfar, M. Aleahmad, S. Gholamreza, S. Majid, N. Niloofar, Polycaprolactone/gelatin nanofibrous scaffolds for tissue engineering. Biointerface Res Appl Chem 11, 11104–11115 (2020)

    Article  Google Scholar 

  9. Muzzarelli RAA, Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar. Drugs 9(9), 1510–1533 (2011)

  10. Best C, Fukunishi T, Drews J, Khosravi R, Hor K, Mahler N, Yi T, Humphrey JD, Johnson J, Christopher K. Breuer, Narutoshi Hibino, Oversized biodegradable arterial grafts promote enhanced neointimal tissue formation. Tissue Eng. Part A 24(15-16), 1251–1261 (2018)

  11. M. Abudhahir, A. Saleem, P. Paramita, S.D. Kumar, C. Tze-Wen, N. Selvamurugan, A. Moorthi, Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications. J. Biomed. Mater. Res. B Appl. Biomater. 109(5), 654–664 (2021). https://doi.org/10.1002/jbm.b.34729

    Article  CAS  Google Scholar 

  12. K. Mohamed Abudhahir, R. Murugesan, R. Vijayashree, N. Selvamurugan, T.-W. Chung, A. Moorthi, Metal doped calcium silicate biomaterial for skin tissue regeneration in vitro. J. Biomater. Appl. 36(1), 140–151 (2021)

    Article  CAS  Google Scholar 

  13. Pestov A, Bratskaya SJM, Chitosan and its derivatives as highly efficient polymer ligands. Molecules 21(3), 330 (2016)

  14. Kravanja G, Primožič M, Knez Ž, Leitgeb MJM, Chitosan-based (nano) materials for novel biomedical applications. Molecules 24(10), 960 (2019)

  15. B. Beleño Acosta, R.C. Advincula, C.D. Grande-Tovar, Chitosan-based scaffolds for the treatment of myocardial infarction: a systematic review. Molecules 28(4), 1920 (2023)

    Article  Google Scholar 

  16. S. Kazemi Asl, M. Rahimzadegan, R. Ostadrahimi, The recent advancement in the chitosan hybrid-based scaffolds for cardiac regeneration after myocardial infarction. Carbohydr. Polym. 300, 120266 (2023). https://doi.org/10.1016/j.carbpol.2022.120266

    Article  CAS  Google Scholar 

  17. V. Sharma, A. Manhas, S. Gupta, M. Dikshit, K. Jagavelu, R.S. Verma, Fabrication, characterization and in vivo assessment of cardiogel loaded chitosan patch for myocardial regeneration. Int. J. Biol. Macromol. 222, 3045–3056 (2022). https://doi.org/10.1016/j.ijbiomac.2022.10.079

    Article  CAS  Google Scholar 

  18. P. Singh, S. Pandit, V. Mokkapati, A. Garg, V. Ravikumar, I. Mijakovic, Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19(7) (2018). https://doi.org/10.3390/ijms19071979

  19. R.S. Darweesh, N.M. Ayoub, S. Nazzal, Gold nanoparticles and angiogenesis: molecular mechanisms and biomedical applications. Int. J. Nanomedicine 14, 7643–7663 (2019). https://doi.org/10.2147/IJN.S223941

    Article  CAS  Google Scholar 

  20. M. Meyer, Processing of collagen based biomaterials and the resulting materials properties. Biomed. Eng. Online 18(1), 24 (2019). https://doi.org/10.1186/s12938-019-0647-0

    Article  Google Scholar 

  21. H. Mohammadi, P.D. Arora, C.A. Simmons, P.A. Janmey, C.A. McCulloch, Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation. J. R. Soc. Interface 12(102), 20141074 (2015). https://doi.org/10.1098/rsif.2014.1074

    Article  CAS  Google Scholar 

  22. K.A. Jansen, A.J. Licup, A. Sharma, R. Rens, F.C. MacKintosh, G.H. Koenderink, The role of network architecture in collagen mechanics. Biophys. J. 114(11), 2665–2678 (2018). https://doi.org/10.1016/j.bpj.2018.04.043

    Article  CAS  Google Scholar 

  23. W.-q. Wu, S. Peng, Z.-y. Song, S. Lin, Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv. Transl. Res. 9(5), 920–934 (2019). https://doi.org/10.1007/s13346-019-00627-0

    Article  CAS  Google Scholar 

  24. L.A. Reis, L.L.Y. Chiu, Y. Liang, K. Hyunh, A. Momen, M. Radisic, A peptide-modified chitosan–collagen hydrogel for cardiac cell culture and delivery. Acta Biomater. 8(3), 1022–1036 (2012). https://doi.org/10.1016/j.actbio.2011.11.030

    Article  CAS  Google Scholar 

  25. Y. Wang, Z. Fan, Q. Li, J. Lu, X. Wang, J. Zhang, Z. Wu, Construction of a myocardial patch with mesenchymal stem cells and poly(CL-co-TOSUO)/collagen scaffolds for myocardial infarction repair by coaxial electrospinning. J. Mater. Chem. B (2023). https://doi.org/10.1039/D3TB00174A

  26. S. Cesur, S. Ulag, L. Ozak, A. Gumussoy, S. Arslan, B.K. Yilmaz, N. Ekren, M. Agirbasli, D.M. Kalaskar, O. Gunduz, Production and characterization of elastomeric cardiac tissue-like patches for myocardial tissue engineering. Polymer Testing 90, 106613 (2020). https://doi.org/10.1016/j.polymertesting.2020.106613

    Article  CAS  Google Scholar 

  27. J.H. Fu, M. Zhao, Y.R. Lin, X.D. Tian, Y.D. Wang, Z.X. Wang, L.X. Wang, Degradable chitosan-collagen composites seeded with cells as tissue engineered heart valves. Heart Lung Circ. 26(1), 94–100 (2017). https://doi.org/10.1016/j.hlc.2016.05.116

    Article  CAS  Google Scholar 

  28. S. Narayan, A. Rajagopalan, J.S. Reddy, A. Chadha, BSA binding to silica capped gold nanostructures: effect of surface cap and conjugation design on nanostructure-BSA interface. RSC Adv. 4(3), 1412–1420 (2014). https://doi.org/10.1039/C3RA45887C

    Article  CAS  Google Scholar 

  29. W. Fan, W. Yan, Z. Xu, H. Ni, Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf. B Biointerfaces 90, 21–27 (2012). https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  CAS  Google Scholar 

  30. L. Ding, C. Hao, Y. Xue, H. Ju, A bio-inspired support of gold nanoparticles−chitosan nanocomposites gel for immobilization and electrochemical study of K562 leukemia cells. Biomacromolecules 8(4), 1341–1346 (2007). https://doi.org/10.1021/bm061224y

    Article  CAS  Google Scholar 

  31. V.V.S.R. Karri, G. Kuppusamy, S.V. Talluri, S.S. Mannemala, R. Kollipara, A.D. Wadhwani, S. Mulukutla, K.R.S. Raju, R. Malayandi, Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int. J. Biol. Macromol. 93, 1519–1529 (2016). https://doi.org/10.1016/j.ijbiomac.2016.05.038

    Article  CAS  Google Scholar 

  32. A. Tasatargil, N. Kuscu, S. Dalaklioglu, D. Adiguzel, C. Celik-Ozenci, S. Ozdem, A. Barutcigil, S. Ozdem, Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β pathway. Peptides 95, 1–9 (2017). https://doi.org/10.1016/j.peptides.2017.07.003

    Article  CAS  Google Scholar 

  33. M. Rajadurai, P. Stanely Mainzen Prince, Preventive effect of naringin on isoproterenol-induced cardiotoxicity in Wistar rats: an in vivo and in vitro study. Toxicology 232(3), 216–225 (2007). https://doi.org/10.1016/j.tox.2007.01.006

    Article  CAS  Google Scholar 

  34. S.M. Ahmed, S.A. Abdelrahman, A.E. Salama, Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats. Ultrastruct. Pathol. 41(2), 168–185 (2017). https://doi.org/10.1080/01913123.2017.1281367

    Article  Google Scholar 

  35. Y.S. Kim, W.S. Kang, J.S. Kwon, M.H. Hong, H.Y. Jeong, H.C. Jeong, M.H. Jeong, Y. Ahn, Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. J. Cell. Mol. Med. 18(6), 1018–1027 (2014). https://doi.org/10.1111/jcmm.12248

    Article  CAS  Google Scholar 

  36. M.Y. Spivak, R.V. Bubnov, I.M. Yemets, L.M. Lazarenko, N.O. Tymoshok, Z.R. Ulberg, Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. The EPMA Journal 4(1), 20–20 (2013). https://doi.org/10.1186/1878-5085-4-20

    Article  Google Scholar 

  37. S. Fleischer, M. Shevach, R. Feiner, T. Dvir, Coiled fiber scaffolds embedded with gold nanoparticles improve the performance of engineered cardiac tissues. Nanoscale 6(16), 9410–9414 (2014). https://doi.org/10.1039/c4nr00300d

    Article  CAS  Google Scholar 

  38. P. Baei, S. Jalili-Firoozinezhad, S. Rajabi-Zeleti, M. Tafazzoli-Shadpour, H. Baharvand, N. Aghdami, Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater. Sci. Eng. C 63, 131–141 (2016). https://doi.org/10.1016/j.msec.2016.02.056

    Article  CAS  Google Scholar 

  39. A. Ahmadi, B. Vulesevic, N.J.R. Blackburn, J.J.M. Ruel, E.J. Suuronen, A collagen-chitosan injectable hydrogel improves cardiac remodeling in a mouse model of myocardial infarction. J. Biomater. Tissue. Eng. 4(11), 886–894 (2014). https://doi.org/10.1166/jbt.2014.1264

    Article  Google Scholar 

  40. W. Dai, L.E. Wold, J.S. Dow, R.A. Kloner, Thickening of the infarcted wall by collagen injection improves left ventricular function in rats. J. Am. Coll. Cardiol. 46(4), 714 (2005)

    Article  CAS  Google Scholar 

  41. Z. Cui, B. Yang, R.-K. Li, Application of biomaterials in cardiac repair and regeneration. Engineering 2(1), 141–148 (2016). https://doi.org/10.1016/J.ENG.2016.01.028

    Article  CAS  Google Scholar 

  42. Y. Deng, J. Ren, G. Chen, G. Li, X. Wu, G. Wang, G. Gu, J. Li, Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci. Rep. 7(1), 2699 (2017). https://doi.org/10.1038/s41598-017-02962-z

    Article  CAS  Google Scholar 

  43. A. Hasan, A. Khattab, M.A. Islam, K.A. Hweij, J. Zeitouny, R. Waters, M. Sayegh, M.M. Hossain, A. Paul, Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv. Sci. 2(11), 1500122 (2015). https://doi.org/10.1002/advs.201500122

    Article  CAS  Google Scholar 

  44. T. Banerjee, S. Mitra, A. Kumar Singh, R. Kumar Sharma, A. Maitra, Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. 243(1), 93–105 (2002). https://doi.org/10.1016/S0378-5173(02)00267-3

    Article  CAS  Google Scholar 

  45. M. Ashokkumar, K.M. Sumukh, R. Murali, N.T. Narayanan, P.M. Ajayan, P. Thanikaivelan, Collagen–chitosan biocomposites produced using nanocarbons derived from goatskin waste. Carbon 50(15), 5574–5582 (2012). https://doi.org/10.1016/j.carbon.2012.08.006

    Article  CAS  Google Scholar 

  46. L. Thi Lanh, D. Quang Khieu, T. Thai Hoa, N. Hai Phong, H. Thi Le Hien, N. Quoc Hien, Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(2), 025014 (2014)

    Article  Google Scholar 

  47. R.P. Ramasamy, S.M. Maliyekkal, Formation of gold nanoparticles upon chitosan leading to formation and collapse of gels. New J. Chem. 38(1), 63–69 (2014). https://doi.org/10.1039/C3NJ00603D

    Article  CAS  Google Scholar 

  48. A. Alagha, A. Nourallah, S. Hariri, Characterization of dexamethasone loaded collagen-chitosan sponge and in vitro release study. J. Drug Deliv. Sci. Technol. 55, 101449 (2020). https://doi.org/10.1016/j.jddst.2019.101449

    Article  CAS  Google Scholar 

  49. S. Unser, S. Holcomb, R. Cary, L. Sagle, Collagen-gold nanoparticle conjugates for versatile biosensing. Sensors 17(2), 378 (2017). https://doi.org/10.3390/s17020378

    Article  CAS  Google Scholar 

  50. D.R. Bhumkar, H.M. Joshi, M. Sastry, V.B. Pokharkar, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 24(8), 1415–1426 (2007). https://doi.org/10.1007/s11095-007-9257-9

    Article  CAS  Google Scholar 

  51. Y.J. Lee, E.-Y. Ahn, Y. Park, Shape-dependent cytotoxicity and cellular uptake of gold nanoparticles synthesized using green tea extract. Nanoscale Res. Lett. 14(1), 129 (2019). https://doi.org/10.1186/s11671-019-2967-1

    Article  CAS  Google Scholar 

  52. J. Hwang, B.H. San, N.J. Turner, L.J. White, D.M. Faulk, S.F. Badylak, Y. Li, S.M. Yu, Molecular assessment of collagen denaturation in decellularized tissues using a collagen hybridizing peptide. Acta Biomater. 53, 268–278 (2017). https://doi.org/10.1016/j.actbio.2017.01.079

    Article  CAS  Google Scholar 

  53. M. Tashakori-Miyanroudi, K. Rakhshan, M. Ramez, S. Asgarian, A. Janzadeh, Y. Azizi, A. Seifalian, F. Ramezani, Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int. J. Biol. Macromol. 163, 1136–1146 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.259

    Article  CAS  Google Scholar 

  54. K. Kalishwaralal, S. Jeyabharathi, K. Sundar, S. Selvamani, M. Prasanna, A. Muthukumaran, A novel biocompatible chitosan–selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Mater. Sci. Eng. C 92, 151–160 (2018). https://doi.org/10.1016/j.msec.2018.06.036

    Article  CAS  Google Scholar 

  55. A.M. Martins, G. Eng, S.G. Caridade, J.F. Mano, R.L. Reis, G. Vunjak-Novakovic, Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2), 635–643 (2014). https://doi.org/10.1021/bm401679q

    Article  CAS  Google Scholar 

  56. B.C. Dash, G. Réthoré, M. Monaghan, K. Fitzgerald, W. Gallagher, A. Pandit, The influence of size and charge of chitosan/polyglutamic acid hollow spheres on cellular internalization, viability and blood compatibility. Biomaterials 31(32), 8188–8197 (2010). https://doi.org/10.1016/j.biomaterials.2010.07.067

    Article  CAS  Google Scholar 

  57. K.M. de la Harpe, P.P.D. Kondiah, Y.E. Choonara, T. Marimuthu, L.C. du Toit, V. Pillay, The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis. Cells 8(10), 1209 (2019). https://doi.org/10.3390/cells8101209

    Article  CAS  Google Scholar 

  58. K. Ichikawa, N. Aritaka, K. Ogura, N. Komatsu, T. Hirano, Strongly suspicious hemolysis caused by azacitidine in a myelodysplastic syndrome patient. Geriatr. Gerontol. Int. 14(4), 1006–1007 (2014). https://doi.org/10.1111/ggi.12226

    Article  Google Scholar 

  59. X. Sun, H. Li, Y. Zhu, P. Xu, Q. Zuo, B. Li, X. Gu, 5-Azacytidine-induced cardiomyocyte differentiation of very small embryonic-like stem cells. Stem Cells Int. 2020, 5162350 (2020). https://doi.org/10.1155/2020/5162350

    Article  CAS  Google Scholar 

  60. M.-C. Yang, S.-S. Wang, N.-K. Chou, N.-H. Chi, Y.-Y. Huang, Y.-L. Chang, M.-J. Shieh, T.-W. Chung, The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin–polysaccharide cardiac patches in vitro. Biomaterials 30(22), 3757–3765 (2009). https://doi.org/10.1016/j.biomaterials.2009.03.057

    Article  CAS  Google Scholar 

  61. J. Leibacher, K. Dauber, S. Ehser, V. Brixner, K. Kollar, A. Vogel, G. Spohn, R. Schäfer, E. Seifried, R. Henschler, Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy 19(1), 61–74 (2017). https://doi.org/10.1016/j.jcyt.2016.09.010

    Article  CAS  Google Scholar 

  62. T. Satish Kumar, D. Vijaya Ramu, N.S. Sampath Kumar, Preparation and characterization of biodegradable collagen – chitosan scaffolds. Mater. Today: Proc. 19, 2587–2590 (2019). https://doi.org/10.1016/j.matpr.2019.10.091

    Article  CAS  Google Scholar 

  63. J. Zhang, Y. Xue, Y. Ni, F. Ning, L. Shang, A. Ma, Size dependent effects of gold nanoparticles in ISO-induced hyperthyroid rats. Sci. Rep. 8(1), 10960 (2018). https://doi.org/10.1038/s41598-018-27934-9

    Article  CAS  Google Scholar 

  64. P.-M. Boarescu, I. Boarescu, I.C. Bocșan, R.M. Pop, D. Gheban, A.E. Bulboacă, C. Nicula, R.-M. Râjnoveanu, S.D. Bolboacă, Curcumin nanoparticles protect against isoproterenol induced myocardial infarction by alleviating myocardial tissue oxidative stress, Electrocardiogram, and Biological Changes. Molecules 24(15), 2802 (2019)

    Article  Google Scholar 

  65. W. Bei, L. Jing, N. Chen, Cardio protective role of wogonin loaded nanoparticle against isoproterenol induced myocardial infarction by moderating oxidative stress and inflammation. Colloids Surf. B Biointerfaces 185, 110635 (2020). https://doi.org/10.1016/j.colsurfb.2019.110635

    Article  CAS  Google Scholar 

  66. S.R. Boovarahan, G.A. Kurian, Preconditioning the rat heart with 5-azacytidine attenuates myocardial ischemia/reperfusion injury via PI3K/GSK3β and mitochondrial KATP signaling axis. J. Biochem. Mol. Toxicol. 35(12), e22911 (2021). https://doi.org/10.1002/jbt.22911

    Article  CAS  Google Scholar 

  67. A. Vinodhini, K. Govindaraju, G. Singaravelu, A. Mohamed Sadiq, V.G. Kumar, Cardioprotective potential of biobased gold nanoparticles. Colloids Surf. B Biointerfaces 117, 480–486 (2014). https://doi.org/10.1016/j.colsurfb.2014.01.006

    Article  CAS  Google Scholar 

  68. L. Song, M. Srilakshmi, Y. Wu, T.S.M. Saleem, Sulforaphane attenuates isoproterenol-induced myocardial injury in mice. Biomed. Res. Int. 2020, 3610285 (2020). https://doi.org/10.1155/2020/3610285

    Article  CAS  Google Scholar 

  69. M. Ibrar, M.A. Khan, I.M. Abdullah, Evaluation of Paeonia emodi and its gold nanoparticles for cardioprotective and antihyperlipidemic potentials. J. Photochem. Photobiol. B Biol. 189, 5–13 (2018). https://doi.org/10.1016/j.jphotobiol.2018.09.018

    Article  CAS  Google Scholar 

  70. E.M. Bakir, N.S. Younis, M.E. Mohamed, N.A. El Semary, Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar. Drugs 16(6), 217 (2018)

    Article  Google Scholar 

  71. Z. Huang, H. Wang, C. Gao, H. Shen, F. Xe, Drug loaded gold nano-particulates for therapeutics of myocardial infarction in rat model. J. Biomater. Tissue. Eng. 8(2), 197–205 (2018)

    Article  Google Scholar 

  72. D. Danila, E. Johnson, P. Kee, CT imaging of myocardial scars with collagen-targeting gold nanoparticles. Nanomed. Nanotechnol. Biol. Med. 9(7), 1067–1076 (2013). https://doi.org/10.1016/j.nano.2013.03.009

    Article  CAS  Google Scholar 

  73. C.-E. Roată, Ș. Iacob, Ș. Morărașu, C. Livadaru, I. Tudorancea, S. Luncă, M.-G. Dimofte, Collagen-binding nanoparticles: a scoping review of methods and outcomes. Crystals 11(11), 1396 (2021)

    Article  Google Scholar 

  74. C. Dong, A. Ma, L. Shang, Animal models used in the research of nanoparticles for cardiovascular diseases. J. Nanopart. Res. 23(8), 172 (2021). https://doi.org/10.1007/s11051-021-05289-z

    Article  Google Scholar 

  75. D.R. Amin, E. Sink, S.P. Narayan, M. Abdel-Hafiz, L. Mestroni, B. Peña, Nanomaterials for cardiac tissue engineering. Molecules 25(21), 5189 (2020)

    Article  CAS  Google Scholar 

  76. I.C. Pop, O. Grad, E. Pall, C. Pestean, M. Mircean, I.A. Mironiuc, The relationship between left ventricular fractional shortening and intravenous administration of stem cells in laboratory rabbits presenting chronic myocardial infarction. Clujul Med 88(1), 28–32 (2015). https://doi.org/10.15386/cjmed-267

    Article  Google Scholar 

  77. W. Dai, S.L. Hale, G.L. Kay, A.J. Jyrala, R.A. Kloner, Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology. Regen. Med. 4(3), 387–395 (2009). https://doi.org/10.2217/rme.09.2

    Article  CAS  Google Scholar 

  78. L.C. Heather, A.F. Catchpole, D.J. Stuckey, M.A. Cole, C.A. Carr, K. Clarke, Isoproterenol induces in vivo functional and metabolic abnormalities: similar to those found in the infarcted rat heart. J. Physiol. Pharmacol. 60(3), 31–39 (2009)

    CAS  Google Scholar 

  79. R. Thangaiyan, S. Arjunan, K. Govindasamy, H.A. Khan, A.S. Alhomida, N.R. Prasad, Galangin attenuates isoproterenol-induced inflammation and fibrosis in the cardiac tissue of albino Wistar rats. Front. Pharmacol. 11 (2020). https://doi.org/10.3389/fphar.2020.585163

  80. S.S. El Shaer, T.A. Salaheldin, N.M. Saied, S.M. Abdelazim, In vivo ameliorative effect of cerium oxide nanoparticles in isoproterenol-induced cardiac toxicity. Exp. Toxicol. Pathol. 69(7), 435–441 (2017). https://doi.org/10.1016/j.etp.2017.03.001

    Article  CAS  Google Scholar 

  81. P.-M. Boarescu, I. Boarescu, A.E. Bulboacă, I.C. Bocșan, R.M. Pop, D. Gheban, R.-M. Râjnoveanu, A. Râjnoveanu, Ş.H. Roşian, A.D. Buzoianu, S.D. Bolboacă, Multi-organ protective effects of curcumin nanoparticles on drug-induced acute myocardial infarction in rats with type 1 diabetes mellitus. Appl. Sci. 11(12), 5497 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Chettinad Academy of Research and Education for funding student project. We thank CSIR-CLRI and IIT Madras for instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoba Narayan.

Ethics declarations

Human and animal rights

All experiments executed according to the guidelines and approved by the institutional animal ethics committee and institutional human ethical committee.

Conflict of interest

The authors declare no competing interests.

Supplementary information

ESM 1

(DOCX 2217 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitha Shalom, R., Narayan, S., Sangamithra, N. et al. 5-Azacytidine incorporated chitosan/collagen/gold nanoparticle matrix preparation and characterization with potential to repair myocardial infarction. emergent mater. 6, 1563–1576 (2023). https://doi.org/10.1007/s42247-023-00534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00534-8

Keywords

Navigation