Skip to main content

Electrospun composite nanofibers for treating infectious esophagitis

Abstract

The electrospinning technique enables the convenient fabrication of non-woven fibrous materials with excellent properties such as fine diameters, a large surface area per unit mass, high porosity, high gas permeability, and small pore sizes. Nanofiber applications in healthcare systems continue to be popular especially in recent years and are integrated with drug delivery systems in the treatment of diseases such as infectious esophagitis. For that reason, in this study, 13% polyvinyl alcohol (PVA), 0.5% gelatin (GEL), and 5, 10, and 15 mg of fluconazole (FCZ) were used to fabricate the drug-loaded nanofibers using the electrospinning method for local treatment of infectious esophagitis. The SEM images demonstrated the fibers’ homogeneous and beadless morphologies and the mean diameter of electrospun nanofibers ranged between 395±12 nm and 314±93 nm. With the addition of FCZ, the properties of electrospun nanofibers improved, and some shifts in FTIR peaks were observed. The thermal properties of the electrospun nanofiber were also improved, and the highest melting temperature of PVA was observed at 235 °C when the drug concentration was highest. The tensile strength of 13% PVA/0.5% GEL/15 FCZ electrospun nanofibers was the highest and resulted in 7.07±1.33 MPa. Moreover, the biocompatibility of electrospun nanofibers was tested on MSC cells, which were able to spread all over the electrospun nanofibers even on day 7, due to the biocompatibility of each electrospun nanofibers. In addition, the antimicrobial and drug release kinetics properties of the FCZ-loaded electrospun nanofiber patches were tested against S. aureus, S. agalactia, and C. albicans.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. A. Pennathur, M.K. Gibson, B.A. Jobe, J.D. Luketich, Oesophageal carcinoma. Lancet. 381(9864), 400–412 (2013)

    Article  Google Scholar 

  2. K.S. Chian, M.F. Leong, K. Kono, Regenerative medicine for oesophageal reconstruction after cancer treatment. Lancet Oncol. 16(2), e84–e92 (2015)

    Article  Google Scholar 

  3. C.M. Wilcox, Overview of infectious esophagitis. Gastroenterol. Hepatol. 9(8), 517–519 (2013)

    Google Scholar 

  4. I.G. Kim, Y. Wu, S.A. Park, H. Cho, J.J. Choi, S.K. Kwon, et al., Tissue-engineered esophagus via bioreactor cultivation for circumferential esophageal reconstruction. Tissue Eng. A. 25(21-22), 1478–1492 (2019)

    Article  CAS  Google Scholar 

  5. H. Park, I.G. Kim, Y. Wu, H. Cho, J.W. Shin, S.A. Park, E.J. Chung, Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model. Head Neck. 43(3), 833–848 (2021)

    Article  Google Scholar 

  6. N.T.B. Linh, B.T. Lee, Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application. J. Biomater. Appl. 27(3), 255–266 (2012)

    Article  Google Scholar 

  7. H. Liu et al., Recent progress of electrospun herbal medicine nanofibers. Biomolecules. 13(1), 184 (2023). https://doi.org/10.3390/biom13010184

    Article  CAS  Google Scholar 

  8. S.G. Kumbar, R. James, S.P. Nukavarapu, C.T. Laurencin, Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater. 3(3), 034002 (2008). https://doi.org/10.1088/1748-6041/3/3/034002

    Article  CAS  Google Scholar 

  9. C. Xie, Q. Gao, P. Wang, L. Shao, H. Yuan, J. Fu, et al., Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Mater. Des. 181, 108092 (2019)

    Article  CAS  Google Scholar 

  10. W. Farhat, F. Chatelain, A. Marret, L. Faivre, L. Arakelian, P. Cattan, A. Fuchs, Trends in 3D bioprinting for esophageal tissue repair and reconstruction. Biomaterials. 267, 120465 (2021)

    Article  CAS  Google Scholar 

  11. M.R. Barron, E.W. Blanco, J.M. Aho, J. Chakroff, J. Johnson, S.D. Cassivi, et al., Full-thickness oesophageal regeneration in pig using a polyurethane mucosal cell seeded graft. J. Tissue Eng. Regen. Med. 12(1), 175–185 (2018)

    Article  CAS  Google Scholar 

  12. J. Qin, J. Zhao, Y. Wu, L. Li, D. Li, H. Deng, et al., Chitosan/collagen layer-by-layer deposition for improving the esophageal regeneration ability of nanofibrous mats. Carbohydr. Polym. 286, 119269 (2022)

    Article  CAS  Google Scholar 

  13. S. La Francesca, J.M. Aho, M.R. Barron, E.W. Blanco, S. Soliman, L. Kalenjian, et al., Long-term regeneration and remodeling of the pig esophagus after circumferential resection using a retrievable synthetic scaffold carrying autologous cells. Sci. Rep. 8(1), 4123 (2018)

    Article  Google Scholar 

  14. M. Song, H. Yu, J. Gu, S. Ye, Y. Zhou, Chemical cross-linked polyvinyl alcohol/cellulose nanocrystal composite films with high structural stability by spraying Fenton reagent as initiator. Int. J. Biol. Macromol. 113, 171–178 (2018)

    Article  CAS  Google Scholar 

  15. C. Kalkandelen, S. Ulag, B. Ozbek, G.O. Eroglu, D. Ozerkan, S.E. Kuruca, F.N. Oktar, M. Sengor, O. Gunduz, 3D printing of gelatine/alginate/β-tricalcium phosphate composite constructs for bone tissue engineering. ChemistrySelect. 4(41), 12032–12036 (2019)

    Article  CAS  Google Scholar 

  16. S. Khan, V. Trivedi, J. Boateng, Functional physico-chemical, ex vivo permeation and cell viability characterization of omeprazole loaded buccal films for paediatric drug delivery. Int. J. Pharm. 500(1-2), 217–226 (2016)

    Article  CAS  Google Scholar 

  17. S. Cesur, E. Ilhan, E. Pilavci, R.B. Sulutas, M. Gurboga, O. Bingol Ozakpinar, et al., A novel strategy as a potential rapid therapy modality in the treatment of corneal ulcers: fluconazole/vancomycin dual drug-loaded nanofibrous patches. Macromol. Mater. Eng. 308, 2200697 (2023)

    Article  CAS  Google Scholar 

  18. S. Ulag, E. Ilhan, R. Demirhan, A. Sahin, B.K. Yilmaz, B. Aksu, et al., Propolis-based nanofiber patches to repair corneal microbial keratitis. Mol. 26(9), 2577 (2021)

    Article  CAS  Google Scholar 

  19. B. Kim, H. Park, S.H. Lee, W.M. Sigmund, Poly (acrylic acid) nanofibers by electrospinning. Mater. Lett. 59(7), 829–832 (2005)

    Article  CAS  Google Scholar 

  20. X.J. Loh, P. Peh, S. Liao, C. Sng, J. Li, Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J. Control. Release 143(2), 175–182 (2010). https://doi.org/10.1016/j.jconrel.2009.12.030

    Article  CAS  Google Scholar 

  21. S.M. Pawde, K. Deshmukh, Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications. J. Appl. Polym. Sci. 109(5), 3431–3437 (2008)

    Article  CAS  Google Scholar 

  22. E.J. Shin, Y.H. Lee, S.C. Choi, Study on the structure and processibility of the iodinated poly (vinyl alcohol). I. Thermal analyses of iodinated poly (vinyl alcohol) films. J. Appl. Polym. Sci. 91(4), 2407–2415 (2004)

    Article  CAS  Google Scholar 

  23. L. Dai, J. Li, E. Yamada, Effect of glycerin on structure transition of PVA/SF blends. J. Appl. Polym. Sci. 86(9), 2342–2347 (2002)

    Article  CAS  Google Scholar 

  24. M. Sun, Y. Wang, L. Yao, Y. Li, Y. Weng, D. Qiu, Fabrication and characterization of gelatin/polyvinyl alcohol composite scaffold. Polym. 14(7), 1400 (2022)

    Article  CAS  Google Scholar 

  25. S. Wang, J. Ren, W. Li, R. Sun, S. Liu, Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydr. Polym. 103, 94–99 (2014)

    Article  CAS  Google Scholar 

  26. H. Karabulut, S. Ulag, B. Dalbayrak, E.D. Arisan, T. Taskin, M.M. Guncu, et al., A novel approach for the fabrication of 3D-printed dental membrane scaffolds including antimicrobial pomegranate extract. Pharm. 15(3), 737 (2023)

    CAS  Google Scholar 

  27. L. Liu, S.E. Kentish, Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. J. Membr. Sci. 553, 63–69 (2018)

    Article  CAS  Google Scholar 

  28. T. Li, X. Ding, L. Tian, S. Ramakrishna, Engineering BSA-dextran particles encapsulated bead-on-string nanofiber scaffold for tissue engineering applications. J. Mater. Sci. 52, 10661–10672 (2017)

    Article  CAS  Google Scholar 

  29. B. Tarus, N. Fadel, A. Al-Oufy, M. El-Messiry, Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alex. Eng. J. 55(3), 2975–2984 (2016)

    Article  Google Scholar 

  30. F. Chellat, M. Tabrizian, S. Dumitriu, E. Chornet, P. Magny, C.H. Rivard, L.H. Yahia, In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complex. J. Biomed. Mater. Res. 51(1), 107–116 (2000)

    Article  CAS  Google Scholar 

  31. O. Gunduz, S. Ulag, Gentamicin and fluconazole loaded electrospun polymethylmethacrylate (PMMA) fibers as a novel platform for the treatment of corneal keratitis. Int. J. Polym. Mater. Polym. Biomater. 72, 1–13 (2022)

    Google Scholar 

  32. H. Shirinzadeh, S. Süzen, N. Altanlar, A.D. Westwell, Antimicrobial activities of new indole derivatives containing 1, 2, 4-triazole, 1, 3, 4-thiadiazole and carbothioamide. Turkish J. Pharm. Sci. 15(3), 291 (2018)

    CAS  Google Scholar 

  33. M. Nowak, M. Gajda, P. Baranowski, P. Szymczyk, B. Karolewicz, K.P. Nartowski, Stabilisation and growth of metastable form II of fluconazole in amorphous solid dispersions. Pharm. 12(1), 12 (2019). https://doi.org/10.3390/pharmaceutics12010012

    Article  CAS  Google Scholar 

  34. J. Pyteraf, W. Jamróz, M. Kurek, U. Bąk, J. Loskot, D. Kramarczyk, M. Paluch, R. Jachowicz, Preparation and advanced characterization of highly drug-loaded, 3D printed orodispersible tablets containing fluconazole. Int. J. Pharm. 630, 122444 (2023). https://doi.org/10.1016/j.ijpharm.2022.122444

    Article  CAS  Google Scholar 

  35. M.S. Arun Kumar, M. Rajesh, L. Subramanian, Solubility enhancement techniques: a comprehensive review. World J Biol Pharm Health Sci. 13(3), 141–149 (2023)

    Google Scholar 

  36. X.H. Chu, X.L. Shi, Z.Q. Feng, Z.Z. Gu, Y.T. Ding, Chitosan nanofiber scaffold enhances hepatocyte adhesion and function. Biotechnol. Lett. 31, 347–352 (2009)

    Article  CAS  Google Scholar 

  37. K.M. Woo, V.J. Chen, P.X. Ma, Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J. Biomed. Mater. Res. A. 67(2), 531–537 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songul Ulag.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

1. The use of the three materials for the treatment of infectious esophagitis has not yet been reported using the electrospinning method.

2. Nanofibrous scaffolds were successfully manufactured and demonstrated biocompatibility with mesenchymal stem cells.

3. The fluconazole addition increased the mechanical properties of the nanofibers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyun, M., Sulutas, R.B., Turan, Y. et al. Electrospun composite nanofibers for treating infectious esophagitis. emergent mater. 6, 1549–1561 (2023). https://doi.org/10.1007/s42247-023-00533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00533-9

Keywords