Skip to main content
Log in

An approach to develop electrically conductive cotton yarn by facile multilayered deposition of silver particles

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Metallizing insulating textile yarns can create flexibility to embed conductive patterns in textile products. However, fabricating a conductive yarn with keeping its inherent soft material’s properties in a scalable manufacturing process is very challenging. In this paper, we present a simple, yet effective multilayered deposition process of the coating conductive silver particle on cotton yarn to impart electrical conductivity. The process includes sequential dip coating and drying process of raw cotton yarn in the silver salt and reducing agent solutions. The result shows that repeating a similar process can enhance the electrical conductivity of the yarn and the resistance can get down up to 30 Ω/inch after 7 consecutive cycles of the coating process. The SEM image shows that the particle aggregates on top of each other and clusters around the fiber. The conductive fabric may withstand up to ten agitated washing cycles. The resistance of the sample steadily increased as a result of washing, bending, and elongation. The stiffness value of conductive fabric was greater while the air permeability value was lower compared to raw cotton fabric due to the deposition of metallic particles on the fabric surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Shahariar, H. Soewardiman, J.S. Jur, Fabrication and packaging of flexible and breathable patch antennas on textiles. SoutheastCon 2017 (2017). https://doi.org/10.1109/secon.2017.7925306

  2. H. Shahariar, H. Soewardiman, C.A. Muchler, J.J. Adams, J.S. Jur, Porous textile antenna designs for improved wearability. Smart Mater. Struct. 27(4), 045008 (2018). https://doi.org/10.1088/1361-665x/aaaf91

    Article  CAS  Google Scholar 

  3. H. Shahariar, J.S. Jur, Correlation of printing faults with the RF characteristics of coplanar waveguides (CPWs) printed on nonwoven textiles. Sensors Actuators A Phys. 273, 240–248 (2018). https://doi.org/10.1016/j.sna.2018.02.043

    Article  CAS  Google Scholar 

  4. Y.L. Yang, M.C. Chuang, S.L. Lou, J. Wang, Thick-film textile-based amperometric sensors and biosensors. Analyst 135(6), 1230 (2010). https://doi.org/10.1039/b926339j

    Article  CAS  Google Scholar 

  5. E. Lee, G. Cho, Polyurethane nanoweb-based textile sensors treated with single-walled carbon nanotubes and silver nanowire. Text. Res. J. 89(14), 2938–2951 (2018). https://doi.org/10.1177/0040517518805382

    Article  CAS  Google Scholar 

  6. I. Kim, G. Cho, Polyurethane nanofiber strain sensors viain situpolymerization of polypyrrole and application to monitoring joint flexion. Smart Mater. Struct. 27(7), 075006 (2018). https://doi.org/10.1088/1361-665x/aac0b2

    Article  CAS  Google Scholar 

  7. E. Lee, I. Kim, H. Liu, G. Cho, Exploration of AgNW/PU nanoweb as ECG textile electrodes and comparison with Ag/AgCl electrodes. Fibers Polym. 18(9), 1749–1753 (2017). https://doi.org/10.1007/s12221-017-7410-6

    Article  CAS  Google Scholar 

  8. R. Xu, A. Lei, C. Dahl-Petersen, K. Hansen, M. Guizzetti, K. Birkelund, E. Thomsen, O. Hansen, Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sensors Actuators A Phys. 188, 383–388 (2012). https://doi.org/10.1016/j.sna.2011.12.035

    Article  CAS  Google Scholar 

  9. T. Linz, C. Kallmayer, R. Aschenbrenner, H. Reichl, Embroidering Electrical Interconnects with Conductive Yarn for the Integration of Flexible Electronic Modules into Fabric (Ninth IEEE International Symposium on Wearable Computers (ISWC’05), 2005). https://doi.org/10.1109/iswc.2005.19

    Book  Google Scholar 

  10. T.M. Brown, F. De Rossi, F. Di Giacomo, G. Mincuzzi, V. Zardetto, A. Reale, A. Di Carlo, Progress in flexible dye solar cell materials, processes and devices. J. Mater. Chem. A 2(28), 10788–10817 (2014). https://doi.org/10.1039/c4ta00902a

    Article  CAS  Google Scholar 

  11. Y. Ouyang, W. Chappell, High frequency properties of electro-textiles for wearable antenna applications. IEEE Trans. Antennas Propag. 56(2), 381–389 (2008). https://doi.org/10.1109/tap.2007.915435

    Article  Google Scholar 

  12. J. Berzowska, M. Coelho, Kukkia and Vilkas: Kinetic Electronic Garments (Ninth IEEE International Symposium on Wearable Computers (ISWC’05), n.d.). https://doi.org/10.1109/iswc.2005.29

  13. K. Koski, E. Koski, T. Bjorninen, A.A. Babar, L. Ukkonen, L. Sydanheimo, Y. Rahmat-Samii, Practical Read Range Evaluation of Wearable Embroidered UHF RFID Tag (Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 2012). https://doi.org/10.1109/aps.2012.6349382

    Book  Google Scholar 

  14. C. Mattmann, F. Clemens, G. Tröster, Sensor for measuring strain in textile. Sensors 8(6), 3719–3732 (2008). https://doi.org/10.3390/s8063719

    Article  CAS  Google Scholar 

  15. J. Berzowska, Electronic textiles: wearable computers, reactive fashion, and soft computation. Textile 3(1), 58–75 (2005). https://doi.org/10.2752/147597505778052639

    Article  Google Scholar 

  16. S. Coyle, D. Morris, K.T. Lau, D. Diamond, N. Moyna, Textile-Based Wearable Sensors for Assisting Sports Performance (2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, 2009). https://doi.org/10.1109/bsn.2009.57

    Book  Google Scholar 

  17. A. Das, J. Krishnasamy, R. Alagirusamy, A. Basu, Electromagnetic interference shielding effectiveness of SS/PET hybrid yarn incorporated woven fabrics. Fibers Polym. 15(1), 169–174 (2014). https://doi.org/10.1007/s12221-014-0169-0

    Article  CAS  Google Scholar 

  18. S. Lam Po Tang, G.K. Stylios, An overview of smart technologies for clothing design and engineering. Int. J. Cloth. Sci. Technol. 18(2), 108–128 (2006). https://doi.org/10.1108/09556220610645766

    Article  Google Scholar 

  19. Y.A. Samad, Y. Li, S.M. Alhassan, K. Liao, Non-destroyable graphene cladding on a range of textile and other fibers and fiber mats. RSC Adv. 4(33), 16935–16938 (2014). https://doi.org/10.1039/c4ra01373e

    Article  CAS  Google Scholar 

  20. S. Tsukada, H. Nakashima, K. Torimitsu, Conductive polymer combined silk fiber bundle for bioelectrical signal recording. PLoS One 7(4), e33689 (2012). https://doi.org/10.1371/journal.pone.0033689

    Article  CAS  Google Scholar 

  21. H. Cheng, Z. Dong, C. Hu, Y. Zhao, Y. Hu, L. Qu, N. Chen, L. Dai, Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5(8), 3428 (2013). https://doi.org/10.1039/c3nr00320e

    Article  CAS  Google Scholar 

  22. L. An, X. Yang, C. Chang, On contact resistance of carbon nanotubes. Int. J. Theor. Appl. Nanotechnol. (2013). https://doi.org/10.11159/ijtan.2013.004

  23. K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Systematic investigation of the intrinsic channel properties and contact resistance of monolayer and multilayer graphene field-effect transistor. Jpn. J. Appl. Phys. 49(5R), 051304 (2010). https://doi.org/10.1143/jjap.49.051304

    Article  Google Scholar 

  24. P. Xue, K. Park, X. Tao, W. Chen, X. Cheng, Electrically conductive yarns based on PVA/carbon nanotubes. Compos. Struct. 78(2), 271–277 (2007). https://doi.org/10.1016/j.compstruct.2005.10.016

    Article  Google Scholar 

  25. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D. Bradley, J.R. Durrant, Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells 90(20), 3520–3530 (2006). https://doi.org/10.1016/j.solmat.2006.06.041

    Article  CAS  Google Scholar 

  26. D. Knittel, E. Schollmeyer, Electrically high-conductive textiles. Synth. Met. 159(14), 1433–1437 (2009). https://doi.org/10.1016/j.synthmet.2009.03.021

    Article  CAS  Google Scholar 

  27. A.S. Barnard, Modelling of the reactivity and stability of carbon nanotubes under environmentally relevant conditions. Phys. Chem. Chem. Phys. 14(29), 10080 (2012). https://doi.org/10.1039/c2cp40862g

    Article  CAS  Google Scholar 

  28. A. Murray, E. Kisin, S. Leonard, S. Young, C. Kommineni, V. Kagan, V. Castranova, A. Shvedova, Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257(3), 161–171 (2009). https://doi.org/10.1016/j.tox.2008.12.023

    Article  CAS  Google Scholar 

  29. H. Dong, D. Wang, G. Sun, J.P. Hinestroza, Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen-bonding interactions. Chem. Mater. 20(21), 6627–6632 (2008). https://doi.org/10.1021/cm801077p

    Article  CAS  Google Scholar 

  30. B.H. Dong, J.P. Hinestroza, Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces 1(4), 797–803 (2009). https://doi.org/10.1021/am800225j

    Article  CAS  Google Scholar 

  31. H. Liu, W.P. Goh, T.B. Norsten, Aqueous-based formation of gold nanoparticles on surface-modified cotton textiles. J. Mol. Eng. Mater. 1(1), 1250001 (2013). https://doi.org/10.1142/s2251237312500013

    Article  Google Scholar 

  32. P. Kanninen, C. Johans, J. Merta, K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles. J. Colloid Interface Sci. 318(1), 88–95 (2008). https://doi.org/10.1016/j.jcis.2007.09.069

    Article  CAS  Google Scholar 

  33. M. Momtaz Islam, M.A. Reza, D.M. Ahmed, M.A.A. Mamun, H. Shahariar, Facile metallization technique of textiles for electronic textile applications. Funct. Textiles Cloth. 91–99 (2019). https://doi.org/10.1007/978-981-13-7721-1_8

  34. M.A.A. Mamun, M.T. Islam, M.M. Islam, K. Sowrov, M.A. Hossain, D.M. Ahmed, H. Shahariar, Scalable process to develop durable conductive cotton fabric. Adv. Fiber Mater. 2(6), 291–301 (2020). https://doi.org/10.1007/s42765-020-00051-x

    Article  CAS  Google Scholar 

  35. I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, A. Gedanken, Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19(24), 245705 (2008). https://doi.org/10.1088/0957-4484/19/24/245705

    Article  CAS  Google Scholar 

  36. C.H. Xue, J. Chen, W. Yin, S.T. Jia, J.Z. Ma, Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Appl. Surf. Sci. 258(7), 2468–2472 (2012). https://doi.org/10.1016/j.apsusc.2011.10.074

    Article  CAS  Google Scholar 

  37. N. Durán, P.D. Marcato, G.I.H. De Souza, O.L. Alves, E. Esposito, Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3(2), 203–208 (2007). https://doi.org/10.1166/jbn.2007.022

    Article  CAS  Google Scholar 

  38. S.T. Dubas, P. Kumlangdudsana, P. Potiyaraj, Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf. A Physicochem. Eng. Asp. 289(1–3), 105–109 (2006). https://doi.org/10.1016/j.colsurfa.2006.04.012

    Article  CAS  Google Scholar 

  39. M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27(1), 76–83 (2009). https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  40. H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan, L. Wang, Gold nanoparticle-decorated MoS 2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 4(52), 27625–27629 (2014)

    Article  CAS  Google Scholar 

  41. J. Polte, T.T. Ahner, F. Delissen, S. Sokolov, F. Emmerling, A.F. Thünemann, R. Kraehnert, Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation. J. Am. Chem. Soc. 132(4), 1296–1301 (2010)

    Article  CAS  Google Scholar 

  42. A. Ambrosi, A. Morrin, M.R. Smyth, A.J. Killard, The application of conducting polymer nanoparticle electrodes to the sensing of ascorbic acid. Anal. Chim. Acta 609(1), 37–43 (2008)

    Article  CAS  Google Scholar 

  43. S. Patra, D. Sen, A.K. Pandey, J. Bahadur, S. Mazumder, S.V. Ramagiri, J.R. Bellare, S.V. Roth, G. Santoro, S. Yu, A. Goswami, Time resolved growth of membrane stabilized silver NPs and their catalytic activity. RSC Adv. 4(103), 59379–59386 (2014). https://doi.org/10.1039/c4ra10400e

    Article  CAS  Google Scholar 

  44. D. Doganay, S. Coskun, S.P. Genlik, H.E. Unalan, Silver nanowire decorated heatable textiles. Nanotechnology 27(43), 435201 (2016). https://doi.org/10.1088/0957-4484/27/43/435201

    Article  CAS  Google Scholar 

  45. A. Hebeish, M. El-Rafie, F. Abdel-Mohdy, E. Abdel-Halim, H. Emam, Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydr. Polym. 82(3), 933–941 (2010). https://doi.org/10.1016/j.carbpol.2010.06.020

    Article  CAS  Google Scholar 

  46. Z. Li, M. Li, Q. Fan, X. Qi, L. Qu, M. Tian, Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications. ACS Appl. Mater. Interfaces 13(12), 14778–14785 (2021). https://doi.org/10.1021/acsami.1c02615

    Article  CAS  Google Scholar 

  47. G. Hossain, I.Z. Hossain, G. Grabher, Piezoresistive smart-textile sensor for inventory management record. Sensors Actuators A Phys. 315, 112300 (2020). https://doi.org/10.1016/j.sna.2020.112300

    Article  CAS  Google Scholar 

  48. H.L.O. Júnior, R.M. Neves, F.M. Monticeli, L. Dall Agnol, Smart fabric textiles: recent advances and challenges. Textiles 2(4), 582–605 (2022). https://doi.org/10.3390/textiles2040034

    Article  Google Scholar 

  49. S.M. Sharaf, Smart conductive textile. Adv. Funct. Protective Textiles 141–167 (2020). https://doi.org/10.1016/b978-0-12-820257-9.00007-2

  50. S. Faquiri, A. Kuijper, Performance Comparison of E-Textile Electrode Properties in a Capacitive Proximity Sensing Setting (Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, 2022). https://doi.org/10.1145/3529190.3529215

    Book  Google Scholar 

  51. B.F. Iliescu, V.N. Mancasi, I.D. Ilie, I. Mancasi, B. Costachescu, D.I. Rotariu, Design principle and proofing of a new smart textile material that acts as a sensor for immobility in severe bed-confined patients. Sensors 23(5), 2573 (2023). https://doi.org/10.3390/s23052573

    Article  Google Scholar 

  52. G. Mariani, J. Taborri, I. Mileti, G. Bagordo, E. Palermo, F. Patane, S. Rossi, Design and Characterization of a Smart Fabric Sensor to Recognize Human Intention for Robotic Applications (2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), 2022). https://doi.org/10.1109/metroind4.0iot54413.2022.9831554

    Book  Google Scholar 

  53. R.G. Ovejero, J.T. González, L.R. Izquierdo, J.A.G. Valencia, E.S. Hernández, V.R.Q. Leithardt, Influence of air temperature and relative humidity on the electrical behaviour of smart textiles. Adv. Intell. Syst. Comput. 244–253 (2022). https://doi.org/10.1007/978-3-031-14859-0_22

  54. J.K. Kim, S. Park, H.S. Cho, J.H. Yang, S.H. Lee, J. Lee, Conditions for textile electrode sensors to monitor cardiac activity in daily life. J. Electrical Eng. Technol. 17(5), 3045–3055 (2022). https://doi.org/10.1007/s42835-022-01156-6

    Article  Google Scholar 

  55. S. Veeralingam, A. Gandrothula, S. Badhulika, Tungsten oxysulfide nanoparticles interspersed nylon based e-textile as a low cost, wearable multifunctional platform for ultra-sensitive tactile sensing and breath sensing applications. Mater. Res. Bull. 160, 112133 (2023). https://doi.org/10.1016/j.materresbull.2022.112133

    Article  CAS  Google Scholar 

  56. F. Alshabouna, H.S. Lee, G. Barandun, E. Tan, Y. Cotur, T. Asfour, L. Gonzalez-Macia, P. Coatsworth, E. Núnez-Bajo, J.S. Kim, F. Güder, PEDOT:PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today 59, 56–67 (2022). https://doi.org/10.1016/j.mattod.2022.07.015

    Article  CAS  Google Scholar 

  57. B. Zhao, Z. Dong, H. Cong, A wearable and fully-textile capacitive sensor based on flat-knitted spacing fabric for human motions detection. Sensors Actuators A Phys. 340, 113558 (2022). https://doi.org/10.1016/j.sna.2022.113558

    Article  CAS  Google Scholar 

  58. Y. Pang, X. Xu, S. Chen, Y. Fang, X. Shi, Y. Deng, Z.L. Wang, C. Cao, Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy 96, 107137 (2022). https://doi.org/10.1016/j.nanoen.2022.107137

    Article  CAS  Google Scholar 

  59. J. Yin, J. Li, V.S. Reddy, D. Ji, S. Ramakrishna, L. Xu, Flexible textile-based sweat sensors for wearable applications. Biosensors 13(1), 127 (2023). https://doi.org/10.3390/bios13010127

    Article  CAS  Google Scholar 

  60. M.A.A. Rumon, G. Cay, V. Ravichandran, A. Altekreeti, A. Gitelson-Kahn, N. Constant, D. Solanki, K. Mankodiya, Textile knitted stretch sensors for wearable health monitoring: design and performance evaluation. Biosensors 13(1), 34 (2022). https://doi.org/10.3390/bios13010034

    Article  CAS  Google Scholar 

  61. M. Wagih, A. Komolafe, A.S. Weddell, S. Beeby, Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission. IEEE Open J. Antennas Propag. 3, 398–411 (2022). https://doi.org/10.1109/ojap.2022.3167089

    Article  Google Scholar 

  62. U. Pandey, P. Singh, R. Singh, Review on miniaturized flexible wearable antenna with SAR measurement for body area network. Mater. Today: Proc. 66, 3667–3674 (2022). https://doi.org/10.1016/j.matpr.2022.07.344

    Article  Google Scholar 

  63. N. Atanasov, G. Atanasova, B. Atanasov, M. Avramov, N. Hristov, Numerical and Experimental Evaluation of a Textile Wearable Antenna for on-body Communications (2022 13th National Conference With International Participation (ELECTRONICA), 2022). https://doi.org/10.1109/electronica55578.2022.9874421

    Book  Google Scholar 

  64. A. Tsolis, S. Bakogianni, C. Angelaki, A.A. Alexandridis, A review of clothing components in the development of wearable textile antennas: design and experimental procedure. Sensors 23(6), 3289 (2023). https://doi.org/10.3390/s23063289

    Article  CAS  Google Scholar 

  65. V. Jain, B.S. Dhaliwal, A. Kumar, A.K. Vats, S. Pattnaik, Experimental investigations on the effect of textile substrate nanomaterial coating on wearable antenna performance. Natl. Acad. Sci. Lett. (2023). https://doi.org/10.1007/s40009-023-01238-7

  66. M.M.H. Mahfuz, M.R. Islam, C.W. Park, E.A.A. Elsheikh, F.M. Suliman, M.H. Habaebi, N.A. Malek, N. Sakib, Wearable textile patch antenna: challenges and future directions. IEEE Access 10, 38406–38427 (2022). https://doi.org/10.1109/access.2022.3161564

    Article  Google Scholar 

  67. J. Xu, B. Xin, X. Du, C. Wang, Z. Chen, Y. Zheng, M. Zhou, Flexible, portable and heatable non-woven fabric with directional moisture transport functions and ultra-fast evaporation. RSC Adv. 10(46), 27512–27522 (2020). https://doi.org/10.1039/d0ra03867a

    Article  CAS  Google Scholar 

  68. H. Souri, D. Bhattacharyya, Wool fabrics decorated with carbon-based conductive ink for low-voltage heaters. Mater. Adv. 3(9), 3952–3960 (2022). https://doi.org/10.1039/d1ma00981h

    Article  CAS  Google Scholar 

  69. N. Maheshwari, M. Abd-Ellah, I.A. Goldthorpe, Transfer printing of silver nanowire conductive ink for e-textile applications. Flexible and Printed. Electronics 4(2), 025005 (2019). https://doi.org/10.1088/2058-8585/ab2543

    Article  CAS  Google Scholar 

  70. M.T. Islam, M.A.A. Mamun, M.T. Hasan, H. Shahariar, Scalable coating process of AgNPs-silicone on cotton fabric for developing hydrophobic and antimicrobial properties. J. Coat. Technol. Res. 18(3), 887–898 (2021). https://doi.org/10.1007/s11998-020-00451-z

    Article  CAS  Google Scholar 

  71. N. Jarach, D. Meridor, M. Buzhor, D. Raichman, H. Dodiuk, S. Kenig, E. Amir, Hybrid antibacterial and electro-conductive coating for textiles based on cationic conjugated polymer. Polymers 12(7), 1517 (2020). https://doi.org/10.3390/polym12071517

    Article  CAS  Google Scholar 

  72. X. Yan, C.R. Bowen, C. Yuan, Z. Hao, M. Pan, Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators. Soft Matter 15(40), 8001–8011 (2019). https://doi.org/10.1039/c9sm01046g

    Article  CAS  Google Scholar 

  73. Y. Wang, J. Guo, D. Xu, Z. Gu, Y. Zhao, Micro-/nano-structured flexible electronics for biomedical applications. Biomed. Tech. 2, 1–14 (2023). https://doi.org/10.1016/j.bmt.2022.11.013

    Article  Google Scholar 

  74. D. Zhang, R. Yin, Y. Zheng, Q. Li, H. Liu, C. Liu, C. Shen, Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 438, 135587 (2022). https://doi.org/10.1016/j.cej.2022.135587

    Article  CAS  Google Scholar 

  75. X. Sun, J.H. Fu, C. Teng, M. Zhang, T. Liu, M. Guo, P. Qin, F. Zhan, Y. Ren, H. Zhao, L. Wang, J. Liu, Superhydrophobic E-textile with an Ag-EGaIn conductive layer for motion detection and electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14(29), 33650–33661 (2022). https://doi.org/10.1021/acsami.2c09554

    Article  CAS  Google Scholar 

  76. V.S. Siavashani, N.C. Gursoy, M. Montazer, P. Altay, Stretchable electromagnetic interference shielding textile using conductive polymers and metal nanoparticles. Fibers Polym. 23(10), 2748–2759 (2022). https://doi.org/10.1007/s12221-022-4492-6

    Article  CAS  Google Scholar 

  77. D. Yao, Z. Tang, Z. Liang, L. Zhang, Q.J. Sun, J. Fan, G. Zhong, Q.X. Liu, Y.P. Jiang, X.G. Tang, V.A. Roy, J. Ouyang, Adhesive, multifunctional, and wearable electronics based on MXene-coated textile for personal heating systems, electromagnetic interference shielding, and pressure sensing. J. Colloid Interface Sci. 630, 23–33 (2023). https://doi.org/10.1016/j.jcis.2022.09.003

    Article  CAS  Google Scholar 

  78. S. Verma, M. Dhangar, S. Paul, K. Chaturvedi, M.A. Khan, A.K. Srivastava, Recent advances for fabricating smart electromagnetic interference shielding textile: a comprehensive review. Electron. Mater. Lett. 18(4), 331–344 (2022). https://doi.org/10.1007/s13391-022-00344-w

    Article  CAS  Google Scholar 

  79. X. Peng, X. Meng, B. Yu, H. Chen, Z. Liu, M. Tang, Y. Zheng, Y. Sun, W. Lu, Y. Dai, Graphitized and flexible porous textile updated from waste cotton for wearable electromagnetic interference shielding. Carbon 207, 144–153 (2023). https://doi.org/10.1016/j.carbon.2023.02.044

    Article  CAS  Google Scholar 

  80. M.Z. Islam, H. Deb, M.K. Hasan, N.A. Khoso, M.K. Hossain, Y. Wentong, X. Qi, Y. Dong, Y. Zhu, Y. Fu, A facile one-pot scalable production of super electromagnetic shielding conductive cotton fabric by hierarchical graphene-composites. J. Mater. Sci. 57(32), 15451–15463 (2022). https://doi.org/10.1007/s10853-022-07411-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Bangladesh University of Textiles in Dhaka, Bangladesh, has been recognized by the writers as a supporter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MD. Momtaz Islam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.M., Ahmed, D.M. & Shahariar, H. An approach to develop electrically conductive cotton yarn by facile multilayered deposition of silver particles. emergent mater. 6, 1027–1036 (2023). https://doi.org/10.1007/s42247-023-00505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00505-z

Keywords

Navigation