Skip to main content
Log in

Structural, electronic, and optical properties of lower-dimensional hybrid perovskite lead-iodide frameworks + SOC via density functional theory

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) hybrid metal halide perovskite is receiving more interest today due to being more stable and having a higher surface area-to-volume ratio than 3-dimensional (3D) hybrid metal halide perovskites. To create a 2D structure with high-efficiency properties, the A cation in the parental 3D structure should be replaced with a bulky organic cation (BOC). So in this study, we aim to investigate the structural, electrical, and optical characteristics of 2D (2-AMP)PbI4 via CASTEP computer code and density functional theory (DFT). The computations utilize the local density approximation (LDA) and the generalized gradient approximation (GGA) techniques. The structural characteristics of GGA-PBEsol demonstrate great agreement with experiment data. The (2-AMP)PbI4 structure consists of corner-sharing PbI64− octahedra separated by alternating sheets of the double-protonated 2-AMP cation. Due to the spin–orbit coupling (SOC) effect, the electronic band gap was reduced from 1.92 to 0.98 eV. According to the partial density of states (PDOS), the Pb-p and I-p bonds supply the most electrons to the band gap. When it comes to optical characteristics, the actual part of the dielectric function reveals that this compound exhibits plasmonic behavior, which increases its capacity to absorb light. The absorption coefficient of (2-AMP)PbI4 shows that this 2D compound able to absorb light in the range of UV and visible light, making it a possible candidate for high-efficiency solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Crystallographic data for the structure used in this article have been accessed through Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1838613. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other relevant data generated and analysed during this study which include computational data, are included within the article.

References

  1. P. Basumatary, P. Agarwal, A short review on progress in perovskite solar cells. Mater. Res. Bull. 149, 111700 (2022). https://doi.org/10.1016/j.materresbull.2021.111700

    Article  CAS  Google Scholar 

  2. J.J. Yoo, S.S. Shin, J. Seo, Toward efficient perovskite solar cells: progress, strategies, and perspectives. ACS Energy Lett. 7(6), 2084–2091 (2022). https://doi.org/10.1021/acsenergylett.2c00592

    Article  CAS  Google Scholar 

  3. J. Seo, J.H. Noh, S. Il Seok, Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49(3), 562–572 (2016). https://doi.org/10.1021/acs.accounts.5b00444. (American Chemical Society)

    Article  CAS  Google Scholar 

  4. H. Dong, C. Ran, W. Gao, M. Li, Y. Xia, W. Huang, Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight 3(1), 3 (2023). https://doi.org/10.1186/s43593-022-00033-z

    Article  Google Scholar 

  5. A.S.R. Bati, Y.L. Zhong, P.L. Burn, M.K. Nazeeruddin, P.E. Shaw, M. Batmunkh, Next-generation applications for integrated perovskite solar cells. Commun. Mater. 4(1), 2 (2023). https://doi.org/10.1038/s43246-022-00325-4

    Article  CAS  Google Scholar 

  6. T.A. Chowdhury, M.A. Bin Zafar, M. Sajjad-Ul Islam, M. Shahinuzzaman, M.A. Islam, M.U. Khandaker, Stability of perovskite solar cells: issues and prospects. RSC Adv. 13(3), 1787–1810 (2023). https://doi.org/10.1039/D2RA05903G

    Article  CAS  Google Scholar 

  7. M.S. Hasan et al., Recent criterion on stability enhancement of perovskite solar cells. Processes 10(7), 1408 (2022). https://doi.org/10.3390/pr10071408

    Article  CAS  Google Scholar 

  8. X. Guan et al., Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small 18(38), 2203311 (2022). https://doi.org/10.1002/smll.202203311

    Article  CAS  Google Scholar 

  9. M.D. Malouangou et al., Recent progress in perovskite materials using diammonium organic cations toward stable and efficient solar cell devices: Dion–Jacobson. Energy Technol. 10(5), 2101155 (2022). https://doi.org/10.1002/ente.202101155

    Article  CAS  Google Scholar 

  10. H.B. Lee, N. Kumar, B. Tyagi, S. He, R. Sahani, J.-W. Kang, Bulky organic cations engineered lead-halide perovskites: a review on dimensionality and optoelectronic applications. Mater. Today Energy 21, 100759 (2021). https://doi.org/10.1016/j.mtener.2021.100759

    Article  CAS  Google Scholar 

  11. T.L. Leung, I. Ahmad, A.A. Syed, A.M.C. Ng, J. Popović, A.B. Djurišić, Stability of 2D and quasi-2D perovskite materials and devices. Commun. Mater. 3(1), 63 (2022). https://doi.org/10.1038/s43246-022-00285-9

    Article  Google Scholar 

  12. P.P. Mohanty, R. Ahuja, S. Chakraborty, Progress and challenges in layered two-dimensional hybrid perovskites. Nanotechnology 33(29), 292501 (2022). https://doi.org/10.1088/1361-6528/ac6529

    Article  Google Scholar 

  13. T. Xu, W. Xiang, D.J. Kubicki, Y. Liu, W. Tress, S. Liu, Simultaneous lattice engineering and defect control via cadmium incorporation for high-performance inorganic perovskite solar cells. Adv. Sci. 9(36), 2204486 (2022). https://doi.org/10.1002/advs.202204486

    Article  CAS  Google Scholar 

  14. C. Lermer et al., Completing the picture of 2-(aminomethylpyridinium) lead hybrid perovskites: insights into structure, conductivity behavior, and optical properties. Chem. Mater. 30(18), 6289–6297 (2018). https://doi.org/10.1021/ACS.CHEMMATER.8B01840

    Article  CAS  Google Scholar 

  15. J. Zhang et al., Exploring spin-orbital coupling effects on photovoltaic actions in Sn and Pb based perovskite solar cells. Nano Energy 38, 297–303 (2017). https://doi.org/10.1016/j.nanoen.2017.05.061

    Article  CAS  Google Scholar 

  16. H. Wang, A. Tal, T. Bischoff, P. Gono, A. Pasquarello, ‘Accurate and efficient band-gap predictions for metal halide perovskites at finite temperature.’ npj Comput. Mater. 8(1), 237 (2022). https://doi.org/10.1038/s41524-022-00869-6

    Article  CAS  Google Scholar 

  17. Z. Xiao, Y. Yan, Progress in theoretical study of metal halide perovskite solar cell materials. Adv. Energy Mater. 7(22), 1701136 (2017). https://doi.org/10.1002/AENM.201701136

    Article  Google Scholar 

  18. M. Pazoki, R. Imani, A. Röckert, T. Edvinsson, Electronic structure of 2D hybrid perovskites: Rashba spin–orbit coupling and impact of interlayer spacing. J. Mater. Chem. A 10(39), 20896–20904 (2022). https://doi.org/10.1039/D2TA05255E

    Article  CAS  Google Scholar 

  19. Y. Nouri et al., The structural, mechanical, thermal, electronic and optical properties of halide perovskites. Solid State Commun. 363, 115087 (2023). https://doi.org/10.1016/j.ssc.2023.115087

    Article  CAS  Google Scholar 

  20. S. Sami et al., Strategies for enhancing the dielectric constant of organic materials. J. Phys. Chem. C 126(45), 19462–19469 (2022). https://doi.org/10.1021/acs.jpcc.2c05682

    Article  CAS  Google Scholar 

  21. S.K. Cushing, N. Wu, Plasmon-enhanced solar energy harvesting. Electrochem. Soc. Interface 22(2), 63–67 (2013). https://doi.org/10.1149/2.F08132IF/XML

    Article  CAS  Google Scholar 

  22. H. Niu, Y. Xie, J. Shao, T. Ye, T. wen Li, Synergy light-trapping-enhanced solar energy conversion in DSSCs containing texture pit and silver nanoparticles. Mater. Sci. Semicond. Process. 148, 106774 (2022). https://doi.org/10.1016/j.mssp.2022.106774

    Article  CAS  Google Scholar 

  23. N. Hasan, M. Arifuzzaman, A. Kabir, Structural, elastic and optoelectronic properties of inorganic cubic FrBX 3 (B = Ge, Sn; X = Cl, Br, I) perovskite: the density functional theory approach. RSC Adv. 12(13), 7961–7972 (2022). https://doi.org/10.1039/D2RA00546H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Ministry of Higher Education (MOHE) via the Fundamental Research Grant Scheme (FRGS/1/2021/STG07/UITM/02/7). The authors would like to thank Universiti Teknologi Mara (UiTM), Ionics Materials & Devices (iMADE) Research Laboratory for their support in providing research facilities for this research and the postdoc Dr. Mohd Hazrie Samat for computational assistance.

Funding

This work was supported by the Ministry of Higher Education (MOHE) via the Fundamental Research Grant Scheme (FRGS/1/2021/STG07/UITM/02/7). A. Ramli receives research support from Fundamental Research Grant Scheme Phase 1 in 2021.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material simulation, data collection, and analysis were performed by Nur Fatin Najihah Abdul Yami, Nur Hamizah Mohd Zaki, and Azliana Ramli. Wan Izhan Nawawi Wan Ismail, Ab Malik Marwan Ali, Mohamad Fariz Mohamad Taib, Oskar Hasdinor Hassan, Suhaila Sepeai, and Suhaida Dila Safian supervised the content and the flow of the paper. The first draft of the manuscript was written by Fatin Najihah Abdul Yami, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. M. M. Ali.

Ethics declarations

Competing interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yami, N.F.N.A., Ramli, A., Nawawi, W.I. et al. Structural, electronic, and optical properties of lower-dimensional hybrid perovskite lead-iodide frameworks + SOC via density functional theory. emergent mater. 6, 999–1007 (2023). https://doi.org/10.1007/s42247-023-00484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00484-1

Keywords

Navigation