Skip to main content
Log in

Designing photonic crystal waveguide–based quantum dot semiconductor lasers for optical telecommunication applications

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Semiconductor lasers are one of the basic components of optical telecommunication systems that affect the performance of optical telecommunication systems. In this paper, the most important goals considered are the work speed of semiconductor lasers, the dimensions of lasers, and the device’s power consumption. To achieve these goals, utilizing slow-light photonic crystal waveguides in quantum dot semiconductor lasers has been proposed and investigated. The results of this study show that by using a wave on a slow photonic crystal, the threshold current of quantum dot lasers can be significantly reduced. The simulation results of the rate equations show that the threshold current of the designed photon crystal laser is about 30 μA, and the laser has a latency of less than 100 ps. Given the many advantages of photonic crystal lasers presented in this study, it is expected that the proposed structure for edge-emission photon crystal lasers will be considered for applications that require lasers with small dimensions and low threshold currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors do not have permissions to share data.

References

  1. C. Reimer et al., High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 152(2), 148–153 (2019)

    Article  Google Scholar 

  2. K.A. Britt, T.S. Humble, High-performance computing with quantum processing units. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(3), 1–13 (2017)

    Article  Google Scholar 

  3. M. Streif, M. Leib, Training the quantum approximate optimization algorithm without access to a quantum processing unit. Quantum Sci. Technol. 5(3), 034008 (2020)

    Article  Google Scholar 

  4. I. Fushman, D. Englund, J. Vučković, Coupling of PbS quantum dots to photonic crystal cavities at room temperature. Appl. Phys. Lett. 87(24), 241102 (2005)

    Article  Google Scholar 

  5. D.G. Gevaux et al., Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities. Appl. Phys. Lett. 88(13), 131101 (2006)

    Article  Google Scholar 

  6. M.A. Buyukkaya, C.-M. Lee, A. Mansoori, G. Balakrishnan, E. Waks, Low power optical bistability from quantum dots in a nanobeam photonic crystal cavity. Appl. Phys. Lett. 121(8), 081 (2022)

    Article  Google Scholar 

  7. S. Yeasmin, S. Yadav, A.B. Bhattacherjee, S. Banerjee, Multistability and Fano resonances in a hybrid optomechanical photonic crystal microcavity. J. Mod. Opt. 68(18), 975–983 (2021)

    Article  CAS  Google Scholar 

  8. G.H.B Thompson, Physics of semiconductor laser devices (Wiley-Interscience, Chichester, Sussex, England and New York, 1980), p. 572

  9. J.E. Bowers, High-speed semiconductor laser design and performance. Solid-State Electron. 30(1), 1–11 (1987)

    Article  CAS  Google Scholar 

  10. T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D: Appl. Phys. 40(9), 266 (2007)

    Article  Google Scholar 

  11. J.-P. Hugonin et al., Coupling into slow-mode photonic crystal waveguides. Optics Lett. 32(18), 2638–2640 (2007)

    Article  CAS  Google Scholar 

  12. Z. Cheng, R. Cao, K. Wei, Y. Yao, X. Liu, J. Kang, J. Dong, Z. Shi, H. Zhang, X. Zhang, 2D materials enabled next-generation integrated optoelectronics: from fabrication to applications. Adv. Sci. 8(11), 2003834 (2021)

    Article  CAS  Google Scholar 

  13. M. Saldutti, M. Xiong, E. Dimopoulos, Yu. Yi, M. Gioannini, J. Mørk, Modal properties of photonic crystal cavities and applications to lasers. Nanomaterials 11(11), 3030 (2021)

    Article  CAS  Google Scholar 

  14. H. Yoshimi et al., Slow light waveguides in topological valley photonic crystals. Optics Lett. 45(9), 2648–2651 (2020)

    Article  CAS  Google Scholar 

  15. M. Heuck, S. Blaaberg, J. Mørk, Theory of passively mode-locked photonic crystal semiconductor lasers. Opt. Express 18(17), 18003–18014 (2010)

    Article  CAS  Google Scholar 

  16. J. Kim, C. Meuer, D. Bimberg, G. Eisenstein, Influence of the pump wavelength on the gain and phase recovery of quantum-dot semi-conductor optical amplifiers. Semicond. Sci. Technol. 26, 014007 (2011)

    Article  Google Scholar 

  17. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, G. Eisenstein, Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 46(11), 1670–1680 (2010)

    Article  CAS  Google Scholar 

  18. S.B. Kuntze, A.J. Zilkie, L. Pavel, J.S. Aitchison, Nonlinear state-space model of semiconductor optical amplifiers with gain compression for system design and analysis. J. Lightw. Technol. 26(14), 2274–2281 (2008)

    Article  CAS  Google Scholar 

  19. S.B. Kuntze, L. Pavel, J.S. Aitchison, Controlling a semiconductor optical amplifier using a state-space model. IEEE J. Quantum Electron. 43(2), 123–129 (2007)

    Article  CAS  Google Scholar 

  20. C. Meuer, J. Kim, M. Laemmlin, S. Liebich, A. Capua, G. Eisenstein, A.R. Kovsh, S.S. Mikhrin, I.L. Krestnikov, D. Bimberg, Static gain saturation in quantum dot semiconductor optical amplifiers. Opt. Exp. 16(11), 8269–8279 (2008)

    Article  Google Scholar 

  21. E. Mizuta, H. Watanabe, T. Baba, All semiconductor low-δ photonic crystal waveguide for semiconductor optical amplifier. Jpn. J. Appl. Phys. 45(8A), 6116–6120 (2006)

    Article  CAS  Google Scholar 

  22. T. Yang, A. Mock, J.D. O’Brien, S. Lipson, D.G. Deppe, Edge-emitting photonic crystal double-heterostructure nanocavity lasers with InAs quantum dot active material. Opt. Lett. 32(9), 1153–1155 (2007)

    Article  CAS  Google Scholar 

  23. S. Gardin, F. Bordas, X. Letartre, C. Seassal, A. Rahmant, R. Bozio, P. Viktorovitch, Microlasers based on effective index confined slow light modes in photonic crystal waveguides. Opt. Express 16, 6331–6339 (2008)

    Article  CAS  Google Scholar 

  24. S. Matsuo, A. Shinya, C.-H. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, M. Notomi, 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption. Opt. Express 19(3), 2242–2250 (2011)

    Article  CAS  Google Scholar 

  25. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser. Opt. Express 20(4), 3773–3780 (2012)

    Article  CAS  Google Scholar 

  26. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, Y. Yamamoto, Y. Nakata, Recent progress in self assembled quantum-dot optical devices for optical telecommunication temperature-insensitive 10 Gb s directly modulated lasers and 40 Gb s signal-regenerative amplifiers. J. Phys. D Appl. Phys. 38, 2126–2134 (2005)

    Article  CAS  Google Scholar 

  27. I. Kang, C. Dorrer, L. Zhang, M. Dinu, M. Rasras, L.L. Buhl, S. Cabot, A. Bhardwaj, X. Liu, M.A. Cappuzzo, A. Wong-Foy, Y.F. Chen, N.K. Dutta, S.S. Patel, D.T. Neilson, C.R. Giles, A. Piccirilli, J. Jaques, Characterization of the dynamical processes in all-op tical signal processing using semiconductor optical amplifiers. IEEE J. Sel. Topics Quantum Electron. 14(3), 758–769 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinya Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X. Designing photonic crystal waveguide–based quantum dot semiconductor lasers for optical telecommunication applications. emergent mater. 6, 663–669 (2023). https://doi.org/10.1007/s42247-023-00477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00477-0

Keywords

Navigation