Skip to main content
Log in

Vibrational spectroscopy on solution-dispersed MoS2 for inkjet-printed photodetectors

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) layered materials have shown promise for a wide range of semiconducting devices formed not only on rigid Si substrates, but also on low-cost, flexible substrates. Here, we present the temperature-dependent (~ 80 K to 573 K) frequency shifts of the Raman-active \({E}_{\text{2g}}^{1}\) and A1g modes of multilayer molybdenum disulfide (MoS2), which exhibited a red shift with increasing temperature. The full-width-at-half-maximum (FWHM) for the \({E}_{\text{2g}}^{1}\) and A1g modes was found to increase with temperature allowing us to compute a reduction in phonon lifetime for our liquid-exfoliated multilayer MoS2 due to the greater disorder. After these spectroscopic studies, the semiconducting dispersion of MoS2 was then integrated with graphene ink, to create an integrated inkjet-printed heterostructure photodetector onto flexible substrates. The photodetector was photo-responsive to broadband incoming radiation in the visible regime, where the photo-responsivity R ~ 0.11 A/W and conductivity σ ~ 5.9 × 10−2 S/m were achieved at room temperature. This high σ is due to the MoS2 flakes that provided a coherent film through additional rotary evaporator densification leading to less-trap density of the photo carrier. The detectivity D was calculated to be ~ 1.7 × 1010 Jones at a low light intensity of 3.2 mW/cm2, while the external quantum efficiency EQE was determined to be ~ 25% at wavelength λ ~ 550 nm. The linear dynamic range (LDR) indicates the high sensitivity and low-phase noise of a photodetector which was also calculated to be ~ 11 dB at room temperature, while the gain G was ~ 0.469 at 0.8 mW/cm2. With increasing intensity of the broadband incoming light source, the rise time and decay time of the photocurrent were measured for the first time for our inkjet-printed MoS2-graphene photodetector, setting the stage for future innovations in solution-processed 2D inorganic semiconductors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. 102, 10451–10453 (2005)

    Article  CAS  Google Scholar 

  2. A.S. Bandyopadhyay, C. Biswas, A.B. Kaul, Light–matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics. Beilstein J. Nanotechnol. 11, 782–797 (2020)

    Article  CAS  Google Scholar 

  3. M. Xu, T. Liang, M. Shi, H. Chen, Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)

    Article  CAS  Google Scholar 

  4. R. Mas-Balleste, C. Gomez-Navarro, J. Gomez-Herrero, F. Zamora, 2D materials: to graphene and beyond. Nanoscale 3, 20–30 (2011)

    Article  CAS  Google Scholar 

  5. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012)

    Article  CAS  Google Scholar 

  6. Y. Li, Z. Zhou, S. Zhang, Z. Chen, MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J. Am. Chem. Soc. 130, 16739–16744 (2008)

    Article  CAS  Google Scholar 

  7. R.F. Hossain, I.G. Deaguero, T. Boland, A.B. Kaul, Biocompatible, large-format, inkjet printed heterostructure MoS 2-graphene photodetectors on conformable substrates. npj 2D Mater Appl 1, 1–10 (2017)

    Article  CAS  Google Scholar 

  8. D. Fadil, R.F. Hossain, G.A. Saenz, A.B. Kaul, On the chemically-assisted excitonic enhancement in environmentally-friendly solution dispersions of two-dimensional MoS2 and WS2. J. Mater. Chem. C 5, 5323–5333 (2017)

    Article  CAS  Google Scholar 

  9. J.A. Desai, N. Adhikari, A.B. Kaul, Chemical exfoliation efficacy of semiconducting WS 2 and its use in an additively manufactured heterostructure graphene–WS 2–graphene photodiode. RSC Adv. 9, 25805–25816 (2019)

    Article  CAS  Google Scholar 

  10. J.N. Coleman et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science (80-) 331, 568–571 (2011)

    Article  CAS  Google Scholar 

  11. R.F. Hossain, M. Min, L.-C. Ma, S.R. Sakri, A.B. Kaul, Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics. npj 2D Mater Appl 5, 1–12 (2021)

    Article  CAS  Google Scholar 

  12. D. McManus et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotechnol. 12, 343 (2017)

    Article  CAS  Google Scholar 

  13. Y. Yao et al., High-concentration aqueous dispersions of MoS2. Adv. Funct. Mater. 23, 3577–3583 (2013)

    Article  CAS  Google Scholar 

  14. M. Min, R.F. Hossain, N. Adhikari, A.B. Kaul, Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates. ACS Appl. Mater. Interfaces 12, 10809–10819 (2020)

    Article  CAS  Google Scholar 

  15. T. Carey, A. Arbab, L. Anzi, H. Bristow, F. Hui, S. Bohm, G. Wyatt-Moon et al., Inkjet printed circuits with 2D semiconductor inks for high-performance electronics. Adv. Electron. Mater. 7(7), 2100112 (2021)

    Article  CAS  Google Scholar 

  16. G. Cunningham et al., Photoconductivity of solution-processed MoS 2 films. J. Mater. Chem. C 1, 6899–6904 (2013)

    Article  CAS  Google Scholar 

  17. W. Choi et al., High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 24, 5832–5836 (2012)

    Article  CAS  Google Scholar 

  18. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497–501 (2013)

    Article  CAS  Google Scholar 

  19. D.-S. Tsai et al., Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7, 3905–3911 (2013)

    Article  CAS  Google Scholar 

  20. H.S. Lee et al., MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)

    Article  CAS  Google Scholar 

  21. B. Chakraborty et al., Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor. Phys Rev B 85, 161403 (2012)

    Article  CAS  Google Scholar 

  22. C. Rice et al., Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS 2. Phys. Rev. B 87, 81307 (2013)

    Article  CAS  Google Scholar 

  23. L. Liang, V. Meunier, First-principles Raman spectra of MoS 2, WS 2 and their heterostructures. Nanoscale 6, 5394–5401 (2014)

    Article  CAS  Google Scholar 

  24. M. Thripuranthaka, R.V. Kashid, C. Sekhar Rout, D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Appl. Phys. Lett. 104, 81911 (2014)

    Article  CAS  Google Scholar 

  25. S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100, 13106 (2012)

    Article  CAS  Google Scholar 

  26. N.A. Lanzillo et al., Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 103, 93102 (2013)

    Article  CAS  Google Scholar 

  27. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 7, 2645–2649 (2007)

    Article  CAS  Google Scholar 

  28. S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.-F. Guinel, R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042–9047 (2013)

    Article  CAS  Google Scholar 

  29. X. Liu et al., Low temperature carrier transport study of monolayer MoS2 field effect transistors prepared by chemical vapor deposition under an atmospheric pressure. J. Appl. Phys. 118, 124506 (2015)

    Article  CAS  Google Scholar 

  30. P.J. Ko et al., Laser power dependent optical properties of mono-and few-layer MoS2. J. Nanosci. Nanotechnol. 15, 6843–6846 (2015)

    Article  CAS  Google Scholar 

  31. H. Xia et al., Numerical calculation of optical phonon decay rate in InN/GaN MQW. IOP Conf Ser Mater Sci Eng 68, 12009 (2014)

    Article  Google Scholar 

  32. R.L. Petritz, Theory of photoconductivity in semiconductor films. Phys. Rev. 104, 1508 (1956)

    Article  CAS  Google Scholar 

  33. W. Zhang et al., High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 25, 3456–3461 (2013)

    Article  CAS  Google Scholar 

  34. A. Rose, Concepts in photoconductivity and allied problems (Interscience publishers, 1963)

    Google Scholar 

  35. D.J. Finn et al., Inkjet deposition of liquid-exfoliated graphene and MoS 2 nanosheets for printed device applications. J. Mater. Chem. C 2, 925–932 (2014)

    Article  CAS  Google Scholar 

  36. F.K. Dolezalek, in Photoconductivity and related phenomena, ed. by J. Mort, D.M. Pal (Elsevier Sci. Publ. Co., New York, 1976), p. 27–63

  37. M.F. Khan, G. Nazir, V.M. Lermolenko, J. Eom, Electrical and photo-electrical properties of MoS2 nanosheets with and without an Al2O3 capping layer under various environmental conditions. Sci. Technol. Adv. Mater. 17, 166–176 (2016)

    Article  CAS  Google Scholar 

  38. A. Armin, J.R. Durrant, S. Shoaee, Interplay between triplet-, singlet-charge transfer states and free charge carriers defining bimolecular recombination rate constant of organic solar cells. J. Phys. Chem. C 121, 13969–13976 (2017)

    Article  CAS  Google Scholar 

  39. F. Withers et al., Heterostructures produced from nanosheet-based inks. Nano Lett. 14, 3987–3992 (2014)

    Article  CAS  Google Scholar 

  40. J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, M. Östling, Inkjet printing of MoS2. Adv. Funct. Mater. 24, 6524–6531 (2014)

    Article  CAS  Google Scholar 

  41. S. Mukherjee, R. Maiti, A.K. Katiyar, S. Das, S.K. Ray, Novel colloidal MoS 2 quantum dot heterojunctions on silicon platforms for multifunctional optoelectronic devices. Sci. Rep. 6, 29016 (2016)

    Article  CAS  Google Scholar 

  42. X. Liu et al., All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 5, 1–9 (2014)

    Google Scholar 

Download references

Funding

This work was supported by the Air Force Office of Scientific Research (grant number FA9550-15–1-0200) and the National Science Foundation (grant number NSF ECCS 1,753,933). A. B. K. received support from the PACCAR Technology Institute and Endowed Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama B. Kaul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, R., Bandyopadhyay, A. & Kaul, A. Vibrational spectroscopy on solution-dispersed MoS2 for inkjet-printed photodetectors. emergent mater. 5, 477–487 (2022). https://doi.org/10.1007/s42247-022-00383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00383-x

Keywords

Navigation