Skip to main content

Flexible tactile sensors based on silver nanowires: material synthesis, microstructuring, assembly, performance, and applications

Abstract

Silver nanowires (AgNWs), with Ag possessing the highest inherent electrical conductivity among all the metal nanomaterials, have shown great promise as sensing elements of high-performance tactile sensors. This, along with their excellent flexibility due to their high aspect ratio, makes up an effective conductive network for flexible electronics. In recent years, flexible tactile sensors have received increased research attention due to their potential as electronic skin (E-skin) for healthcare monitoring, human motion detection, soft robotics, and so on. However, there is still a challenge in achieving good stability for AgNW-based sensors due to the mismatch of mechanical properties between AgNWs and stretchable polymer substrates. Different microstructure designs, device assembly, and material synthesis methods have been used to achieve AgNW-based sensors with excellent stretchability, stability, and sensitivity over a wide detecting range. This paper provides an overview of the various approaches in fabricating flexible tactile sensors based on AgNWs and their resulting performance. The relevant working principles and critical performance parameters are also briefly described. Lastly, the challenges and prospects in developing AgNW-based flexible sensors are highlighted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. G. Shen, B. Chen, T. Liang, Z. Liu, S. Zhao, J. Liu, C. Zhang, W. Yang, Y. Wang, X. He, Adv. Electron. Mater. 6, 1901360 (2020). https://doi.org/10.1002/aelm.201901360

    CAS  Article  Google Scholar 

  2. Y. Li, D. Han, C. Jiang, E. Xie, W. Han, Adv. Mater. Technol. 4, 1800504 (2018). https://doi.org/10.1002/admt.201800504

    CAS  Article  Google Scholar 

  3. X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang, Y. Zhang, R. Sun, C. Wong, ACS Appl. Mater. Interfaces 9, 26314–26324 (2017). https://doi.org/10.1021/acsami.7b05753

    CAS  Article  Google Scholar 

  4. Y. Lian, H. Yu, M. Wang, X. Yang, H. Zhang, Nanoscale Res Lett 15, 70 (2020). https://doi.org/10.1186/s11671-020-03303-2

    CAS  Article  Google Scholar 

  5. U.P. Claver, G. Zhao, Adv. Eng. Mater. 23, 2001187 (2021). https://doi.org/10.1002/adem.202001187

    Article  Google Scholar 

  6. S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Adv. Mater. 33, 2005902 (2021). https://doi.org/10.1002/adma.202005902

    CAS  Article  Google Scholar 

  7. X. Liu, Y. Wei, Y. Qiu, Micromachines 12, 695 (2021). https://doi.org/10.3390/mi12060695

    Article  Google Scholar 

  8. H. Chen and Y. Zhou, in Functional Tactile Sensors, ed. By Y. Zhou, H. Chou (Woodhead Publishing), pp. 1–6 (2021). https://doi.org/10.1016/B978-0-12-820633-1.00011-5

  9. F. Han, M. Li, H. Ye, G. Zhang, Nanomaterials 11, 1220 (2021). https://doi.org/10.3390/nano11051220

    CAS  Article  Google Scholar 

  10. G.-J. Zhu, P.-G. Ren, J. Wang, Q. Duan, F. Ren, W.-M. Xia, D.-X. Yan, ACS Appl. Mater. Interfaces 12, 19988–19999 (2020). https://doi.org/10.1021/acsami.0c03697

    CAS  Article  Google Scholar 

  11. D. Yoo, D.-J. Won, W. Cho, J. Lim, J. Kim, Adv. Mater. Technol. 6, 2100358 (2021). https://doi.org/10.1002/admt.202100358

    CAS  Article  Google Scholar 

  12. Y. Zhang, Y. Hu, P. Zhu, F. Han, Y. Zhu, R. Sun, C.-P. Wong, ACS Appl. Mater. Interfaces. 9, 35968–35976 (2017). https://doi.org/10.1021/acsami.7b09617

    CAS  Article  Google Scholar 

  13. C. Mu, Y. Song, W. Huang, A. Ran, R. Sun, W. Xie, H. Zhang, Adv. Funct. Mater. 28, 1707503 (2018). https://doi.org/10.1002/adfm.201707503

    CAS  Article  Google Scholar 

  14. H. Jeong, Y. Noh, S.H. Ko, D. Lee, Compos. Sci. Technol. 174, 50–57 (2019). https://doi.org/10.1016/j.compscitech.2019.01.028

    CAS  Article  Google Scholar 

  15. J. Luan, Q. Wang, X. Zheng, Y. Li, N. Wang, Micromachines 10, 372 (2019). https://doi.org/10.3390/mi10060372

    Article  Google Scholar 

  16. L. Ma, X. Shuai, Y. Hu, X. Liang, P. Zhu, R. Sun, C.P. Wong, J. Mater. Chem. C 6, 13232–13240 (2018). https://doi.org/10.1039/C8TC04297G

    CAS  Article  Google Scholar 

  17. S.-Y. Liu, J.-G. Lu, H.-P.D. Shieh, IEEE Sensors J. 18, 1870–1876 (2018). https://doi.org/10.1109/JSEN.2017.2789242

    CAS  Article  Google Scholar 

  18. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t

    CAS  Article  Google Scholar 

  19. L. Dan, S. Shi, H.-J. Chung, A. Elias, ACS Appl. Nano Mater. 2, 4869–4878 (2019). https://doi.org/10.1021/acsanm.9b00807

    CAS  Article  Google Scholar 

  20. R. Scaffaro, A. Maio, M.C. Citarrella, Eur. Pol. J. 151, 110421 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110421

    CAS  Article  Google Scholar 

  21. V. Amoli, J.S. Kim, S.Y. Kim, J. Koo, Y.S. Chung, H. Choi, D.H. Kim, Adv. Funct. Mater. 30, 1904532 (2019). https://doi.org/10.1002/adfm.201904532

    CAS  Article  Google Scholar 

  22. D. Tan, C. Jiang, Q. Li, S. Bi, J. Song, J. Mater. Sci.: Mater. Electron. 31, 15669–15696 (2020). https://doi.org/10.1007/s10854-020-04131-x

    CAS  Article  Google Scholar 

  23. J.-I. Park, D.-K. Kim, J. Jang, I.M. Kang, H. Kim, J. Park, I.W. Nam, P. Lang, J.-H. Bae, Composites Sci. & Technol. 200, 108471 (2020). https://doi.org/10.1016/j.compscitech.2020.108471

    CAS  Article  Google Scholar 

  24. C. Mayousse, C. Celle, E. Moreau, J.-F. Mainguet, A. Carella, J.-P. Simonato, Nanotechnology 24, 215501 (2013). https://doi.org/10.1088/0957-4484/24/21/215501

    CAS  Article  Google Scholar 

  25. Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 23, 664–668 (2010). https://doi.org/10.1002/adma.201003398

    CAS  Article  Google Scholar 

  26. P. Kou, L. Yang, K. Chi, S. He, Opt. Mater. Express 5, 2347–2358 (2015). https://doi.org/10.1364/ome.5.002347

    CAS  Article  Google Scholar 

  27. R. Arat, G. Jia, J. Dellith, A. Dellith, J. Plentz, Materials Today Communications 26, 102162 (2021). https://doi.org/10.1016/j.mtcomm.2021.102162

    CAS  Article  Google Scholar 

  28. X. Sun, T. Liu, J. Zhou, L. Yao, S. Liang, M. Zhao, C. Liu, N. Xue, IEEE Sensors J. 21, 10291–10303 (2021). https://doi.org/10.1109/JSEN.2021.3061677

    CAS  Article  Google Scholar 

  29. H. Li, G. Ding, Z. Yang, Micromachines 10, 206 (2019). https://doi.org/10.3390/mi10030206

    Article  Google Scholar 

  30. M. Mohammed Ali, D. Maddipatla, B. B. Narakathu, A. A. Chlaihawi, S. Emamian, F. Janabi, B. J. Bazuin, M. Z. Atashbar, Sensors Actuators A: Phys. 274, 109–115 (2018). https://doi.org/10.1016/j.sna.2018.03.003

  31. M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Adv. Funct. Mater. 26, 1678–1698 (2016). https://doi.org/10.1002/adfm.201504755

    CAS  Article  Google Scholar 

  32. S.-R. Kim, J.-H. Kim, J.-W. Park, ACS Appl. Mater. & Interfaces 9, 26407–26416 (2017). https://doi.org/10.1021/acsami.7b06474

    CAS  Article  Google Scholar 

  33. M. Tian, Y. Lu, L. Qu, S. Zhu, X. Zhang, S. Chen, Ind. Eng. Chem. 58, 5737–5742 (2019). https://doi.org/10.1021/acs.iecr.9b00035

    CAS  Article  Google Scholar 

  34. Y. Lu, M.C. Biswas, Z. Guo, J.-W. Jeon, E.K. Wujcik, Biosens. Bioelectron. 123, 167–677 (2019). https://doi.org/10.1016/j.bios.2018.08.037

    CAS  Article  Google Scholar 

  35. X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Adv. Funct. Mater. 28, 1800850 (2018). https://doi.org/10.1002/adfm.201800850

    CAS  Article  Google Scholar 

  36. C.S. Boland, U. Khan, H. Benameur, J.N. Coleman, Nanoscale 9, 18507–18515 (2017). https://doi.org/10.1039/C7NR06685F

    CAS  Article  Google Scholar 

  37. W. Hu, X. Niu, R. Zhao, Q. Pei, Appl. Phys. Lett. 102, 083303 (2013). https://doi.org/10.1063/1.4794143

    CAS  Article  Google Scholar 

  38. Y.-L. Chen, J.-S. Xie, A. Li, F.-J. Song, S.-R. Che, Y.-J. Gong, IEEE Sensors J. 22 (2021) https://doi.org/10.1109/JSEN.2021.3128556

  39. J. Shintake, Y. Piskarev, S.H. Jeong, D. Floreano, Adv. Mater. Technol. 3, 1700284 (2017). https://doi.org/10.1002/admt.201700284

    CAS  Article  Google Scholar 

  40. J. Britton, K. Krukiewicz, M. Chandran, J. Fernandez, A. Poudel, J.-R. Sarasua, U. FitzGerald, M.J.P. Biggs, Mater. & Design 206, 109700 (2021). https://doi.org/10.1016/j.matdes.2021.109700

    CAS  Article  Google Scholar 

  41. S. Aziz, K.-C. Jung, S.-H. Chang, Compos. Struct. 224, 111005 (2019). https://doi.org/10.1016/j.compstruct.2019.111005

    Article  Google Scholar 

  42. D.H. Ho, R. Song, Q. Sun, W.-H. Park, S.Y. Kim, C. Pang, D.H. Kim, S.-Y. Kim, J. Lee, J.H. Cho, ACS Appl. Mater. Interf. 9, 44678–44686 (2017). https://doi.org/10.1021/acsami.7b15999

    CAS  Article  Google Scholar 

  43. H. Li, J. Chen, X. Chang, Y. Xu, G. Zhao, Y. Zhu, Y. Li, J. Mater. Chem. A 9, 1795–1802 (2021). https://doi.org/10.1039/D0TA10990H

    CAS  Article  Google Scholar 

  44. R.R. da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y. Xia, ACS Nano 10, 7892–7900 (2016). https://doi.org/10.1021/acsnano.6b03806

    CAS  Article  Google Scholar 

  45. A. Reizabal, S. Gonçalves, N. Pereira, C.M. Costa, L. Pérez, J.L. Vilas-Vilela, S. Lanceros-Mendez, J. Mater. Chem. C 8, 13053–13062 (2020). https://doi.org/10.1039/D0TC03428B

    CAS  Article  Google Scholar 

  46. R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey, ACS Nano 7, 7654–7663 (2013). https://doi.org/10.1021/nn403324t

    CAS  Article  Google Scholar 

  47. X. Zhai, W. Wang, J. Jia, P. Dong, J Mater Sci: Mater Electron 32, 15622–15632 (2021). https://doi.org/10.1007/s10854-021-06111-1

    CAS  Article  Google Scholar 

  48. A. Kumar, M.O. Shaikh, C.H. Chuang, Nanomaterials 11, 693 (2021). https://doi.org/10.3390/nano11030693

    CAS  Article  Google Scholar 

  49. P.V. Adhyapak, P. Karandikar, K. Vijayamohanan, A.A. Athawale, A.J. Chandwadkar, Mater. Lett. 58, 1168–1171 (2004). https://doi.org/10.1016/j.matlet.2003.09.008

    CAS  Article  Google Scholar 

  50. A. Keilbach, J. Moses, R. Köhn, M. Döblinger, T. Bein, Chem. Mater. 22, 5430–5436 (2010). https://doi.org/10.1021/cm100349c

    CAS  Article  Google Scholar 

  51. H. Yu, J. Peng, M. Zhai, J. Li, G. Wei, Physica E 40, 2694–2697 (2008). https://doi.org/10.1016/j.physe.2007.12.031

    CAS  Article  Google Scholar 

  52. S. Cui, Y. Liu, Z. Yang, X. Wei, Mater. Des. 28, 722–725 (2007). https://doi.org/10.1016/j.matdes.2005.08.007

    CAS  Article  Google Scholar 

  53. W. Li, H. Zhang, S. Shi, J. Xu, X. Qin, Q. He, K. Yang, W. Dai, G. Liu, Q. Zhou, H. Yu, S.R.P. Silva, M. Fahlman, J. Mater. Chem. C 8, 4636–4674 (2020). https://doi.org/10.1039/c9tc06865a

    CAS  Article  Google Scholar 

  54. M.J. Kim, Y.S. Cho, Y.D. Huh, Bull. Korean Chem. Soc. 33, 1762–1764 (2012). https://doi.org/10.5012/bkcs.2012.33.5.1762

    CAS  Article  Google Scholar 

  55. B.H. Hong, S.C. Bae, C.-W. Lee, S. Jeong, K.S. Kim, Science 294, 348–351 (2001). https://doi.org/10.1126/science.1062126

    CAS  Article  Google Scholar 

  56. B. Bari, J. Lee, T. Jang, P. Won, S.H. Ko, K. Alamgir, M. Arshad, L.J. Guo, J. Mater. Chem. A 4, 11365–11371 (2016). https://doi.org/10.1039/c6ta03308c

    CAS  Article  Google Scholar 

  57. Z. Wang, J. Liu, X. Chen, J. Wan, Y. Qian, Chem. Eur. J. 11, 160–163 (2005). https://doi.org/10.1002/chem.200400705

    CAS  Article  Google Scholar 

  58. D. Shan, L. Liu, Z. Chen, J. Zhang, R. Cui, E. Hong, B. Wang, Arab. J. Chem. 14, 102978 (2021). https://doi.org/10.1016/j.arabjc.2020.102978

    CAS  Article  Google Scholar 

  59. D. Gao, J. Zhu, M. Ye, Y. Li, J. Ma, J. Liu, J. Ind. Text. 1-19 (2021).https://doi.org/10.1177/1528083720982005

  60. W. Zhao, S.S. Wang, C.B. Zhao, H.T. Cao, H. Zhang, A.Z. Peng, H.J. Dong, L.H. Xie, W. Huang, J. Mater. Chem. C 9, 1874–1879 (2021). https://doi.org/10.1039/D0TC05149G

    CAS  Article  Google Scholar 

  61. N. de Guzman, M. D. L. Balela, J. Nanomater. 1–14 (2017). https://doi.org/10.1155/2017/7896094

  62. K.E. Korte, S.E. Skrabalak, Y. Xia, J. Mater. Chem. 18, 437–441 (2008). https://doi.org/10.1039/b714072j

    CAS  Article  Google Scholar 

  63. S. Fahad, H. Yu, L. Wang, J. Liu, S. Li, J. Fu, B.U. Amin, R.U. Khan, S. Mehmood, F. Haq, W. Nan, M. Usman, Mater. Chem. Phys. 267, 124643 (2021). https://doi.org/10.1016/j.matchemphys.2021.124643

    CAS  Article  Google Scholar 

  64. N. De Guzman, M.D. Balela, MATEC Web Conf. 27, 03007 (2015). https://doi.org/10.1051/matecconf/20152703007

    CAS  Article  Google Scholar 

  65. N. De Guzman, M. Ramos Jr., M.D. Balela, Mater. Res. Bulletin 106, 446–454 (2018). https://doi.org/10.1016/j.materresbull.2018.06.030

    CAS  Article  Google Scholar 

  66. N. De Guzman, M.D. Balela, Key Eng. Mater. 775, 254–259 (2018). https://doi.org/10.4028/www.scientific.net/KEM.775.254

    Article  Google Scholar 

  67. A. Kaynak, L. Wang, C. Hurren, X. Wang, Fibers Poly. 3, 24–30 (2002). https://doi.org/10.1007/BF02875365

    CAS  Article  Google Scholar 

  68. A. Gurarslan, B. Özdemir, İ. H. Bayat, M. B. Yelten, G. Karabulut Kurt, J. Engg. Fibers Fabr. 14 (2019). https://doi.org/10.1177/1558925019856222

  69. D.Y. Choi, H.W. Kang, H.J. Sung, S.S. Kim, Nanoscale 5, 977–983 (2013). https://doi.org/10.1039/c2nr32221h

    CAS  Article  Google Scholar 

  70. M.G. Shin, C.J. Choi, Y. Jung, J.H. Choi, J.S. Ko, AIP Adv. 10, 035101 (2020). https://doi.org/10.1063/1.5133989

    CAS  Article  Google Scholar 

  71. D. Pu, W. Zhou, Y. Li, J. Chen, J. Chen, H. Zhang, B. Mi, L. Wang, Y. Ma, RSC Adv. 5, 100725–100729 (2015). https://doi.org/10.1039/c5ra20097k

    CAS  Article  Google Scholar 

  72. T.Q. Trung, S. Ramasundaram, B.-U. Hwang, N.-E. Lee, Adv. Mater. 28, 502–509 (2015). https://doi.org/10.1002/adma.201504441

    CAS  Article  Google Scholar 

  73. L. Zhang, T. Song, L. Shi, N. Wen, Z. Wu, C. Sun, D. Jiang, Z. Guo, J. Nanostruct. Chem. 11, 323–341 (2021). https://doi.org/10.1007/s40097-021-00436-3

    CAS  Article  Google Scholar 

  74. W. Li, S. Yang, A. Shamim, Npj Flex. Electron. 3 (2019). https://doi.org/10.1038/s41528-019-0057-1

  75. W. Pan, J. Wang, Y.-P. Li, X.-B. Sun, J.-P. Wang, X.-X. Wang, J. Zhang, H.-D. You, G.-F. Yu, Y.-Z. Long, Polymers 12, 339 (2020). https://doi.org/10.3390/polym12020339

    CAS  Article  Google Scholar 

  76. K. S. Kumar, P.-Y. Chen, H. Ren, Research 2019, 1–32 (2019). https://doi.org/10.34133/2019/3018568

  77. D.J. Finn, M. Lotya, J.N. Coleman, ACS Appl. Mater. Interfaces 7, 9254–9261 (2015). https://doi.org/10.1021/acsami.5b01875

    CAS  Article  Google Scholar 

  78. Q. Huang, K.N. Al-Milaji, H. Zhao, ACS Appl. Nano Mater. 1, 4528–4536 (2018). https://doi.org/10.1021/acsanm.8b00830

    CAS  Article  Google Scholar 

  79. S. Cheon, H. Kang, H. Kim, Y. Son, J.Y. Lee, H.-J. Shin, S.-W. Kim, J.H. Cho, Adv. Funct. Mater. 28, 1703778 (2017). https://doi.org/10.1002/adfm.201703778

    CAS  Article  Google Scholar 

  80. Z. Zhang, Y. Wu, Z. Wang, X. Zhang, Y. Zhao, L. Sun, Mater. Sci. & Engg.: C 78, 706–714 (2017). https://doi.org/10.1016/j.msec.2017.04.138

  81. Z. Yang, Z. Wu, D. Jiang, R. Wei, X. Mai, D. Pan, S. Vupputuri, L. Weng, N. Natik, Z. Guo, J. Mater. Chem. C 9, 2752–2762 (2021). https://doi.org/10.1039/D0TC04659K

    CAS  Article  Google Scholar 

  82. W. Jia, Q. Zhang, Y. Cheng, D. Zhao, Y. Liu, W. Zhang, S. Sang, NANO 14, 1950081 (2019). https://doi.org/10.1142/S1793292019500814

    CAS  Article  Google Scholar 

  83. M.F. Ahmed, Y. Li, C. Zeng, Mater. Chem. & Phys. 229, 167–173 (2019). https://doi.org/10.1016/j.matchemphys.2019.03.015

    CAS  Article  Google Scholar 

  84. D. Jiang, Y. Wang, B. Li, C. Sun, Z. Wu, H. Yan, L. Xing, S. Qi, Y. Li, H. Liu, W. Xie, X. Wang, T. Ding, Z. Guo, Macro. Mater. Engg. 304, 1900074 (2019). https://doi.org/10.1002/mame.201900074

    CAS  Article  Google Scholar 

  85. J. Zhang, Y. Cao, M. Qiao, L. Ai, K. Sun, Q. Mi, S. Zang, Y. Zuo, X. Yuan, Q. Wang, Sensors Actuators A: Phys. 274, 132–140 (2018). https://doi.org/10.1016/j.sna.2018.03.011

    CAS  Article  Google Scholar 

  86. G.-J. Zhu, P.-G. Ren, H. Guo, Y.-L. Jin, D.-X. Yan, Z.-M. Li, ACS Appl. Mater. Interfaces 11, 23649–23658 (2019). https://doi.org/10.1021/acsami.9b08611

    CAS  Article  Google Scholar 

  87. Y. Cao, T. Lai, F. Teng, C. Liu, A. Li, Prog. Nat. Sci.: Mater. Int. 31, 379–386 (2021). https://doi.org/10.1016/j.pnsc.2021.05.005

    CAS  Article  Google Scholar 

  88. H.-M. Zhang, Y. Zhang, J.-W. Zhang, X. Ye, Y.-Y. Li, P. Wang, Poly. Composites 42, 2523–2530 (2021). https://doi.org/10.1002/pc.25997

    CAS  Article  Google Scholar 

  89. Z. Zhou, Y. Li, J. Cheng, S. Chen, R. Hu, X. Yan, X. Liao, C. Xu, J. Yu, L. Li, J. Mater. Chem. C 6, 13120–13127 (2018). https://doi.org/10.1039/c8tc02716a

    CAS  Article  Google Scholar 

  90. D. Li, Y. Fan, G. Han, Z. Guo, ACS Appl. Mater. Interfaces 12, 10039–10049 (2020). https://doi.org/10.1021/acsami.9b23378

    CAS  Article  Google Scholar 

  91. Z. Ming, X. Ruan, C. Bao, Q. Lin, Y. Yang, L. Zhu, Adv. Funct. Mater. 27, 1606258 (2017). https://doi.org/10.1002/adfm.201606258

    CAS  Article  Google Scholar 

  92. S. Garain, S. Jana, T.K. Sinha, D. Mandal, ACS Appl. Mater. Interfaces 8, 4532–4540 (2016). https://doi.org/10.1021/acsami.5b11356

    CAS  Article  Google Scholar 

  93. P. Lei, P. Zhang, S. Yao, S. Song, L. Dong, X. Xu, X. Liu, K. Du, J. Feng, H. Zhang, ACS Appl. Mater. Interfaces 8, 27490–27497 (2016). https://doi.org/10.1021/acsami.6b08335

    CAS  Article  Google Scholar 

  94. F. Liu, F. Han, L. Ling, J. Li, S. Zhao, T. Zhao, X. Liang, D. Zhu, G. Zhang, R. Sun, D. Ho, C. Wong, Chem. Eur. J. 24, 16823–16832 (2018). https://doi.org/10.1002/chem.201803369

    CAS  Article  Google Scholar 

  95. R. Shi, Z. Lou, S. Chen, G. Shen, Sci. China Mater. 61, 1587–1595 (2018). https://doi.org/10.1007/s40843-018-9267-3

    CAS  Article  Google Scholar 

  96. K.S. Kumar, Z. Xu, M.S. Kalairaj, G. Ponraj, H. Huang, C. Ng, Q.H. Wu, H. Ren, Biosensors 11, 156 (2021). https://doi.org/10.3390/bios11050156

    CAS  Article  Google Scholar 

  97. B. Zhu, Z. Niu, H. Wang, W.R. Leow, H. Wang, Y. Li, L. Zheng, J. Wei, F. Huo, X. Chen, Nano. Mater. Sci. 10, 3625–3631 (2014). https://doi.org/10.1002/smll.201401207

    CAS  Article  Google Scholar 

  98. S. Chen, S. Li, S. Peng, Y. Huang, J. Zhao, W. Tang, X. Guo, J. Semicond. 39, 013001 (2018). https://doi.org/10.1088/1674-4926/39/1/013001

    CAS  Article  Google Scholar 

  99. K.-H. Kim, N.-S. Jang, S.-H. Ha, J.H. Cho, J.-M. Kim, Composites Sci. Tech. 14, 1704232 (2018). https://doi.org/10.1002/smll.201704232

    CAS  Article  Google Scholar 

  100. K.S. Kumar, X. Xiao, M.S. Kalairaj, G. Ponraj, C. Li, C.J. Cai, C.M. Lim, H. Ren, IEEE/ASME Trans. Mechatron. (2021). https://doi.org/10.1109/TMECH.2021.3069782

    Article  Google Scholar 

  101. S. Han, Q. Wan, K. Zhou, A. Yan, Z. Lin, B. Shu, C. Liu, ACS Appl. Nano Mater. 4, 8273–8281 (2021). https://doi.org/10.1021/acsanm.1c01455

    CAS  Article  Google Scholar 

  102. H. Zhao, Y. Zhou, S. Cao, Y. Wang, J. Zhang, S. Feng, J. Wang, D. Li, D. Kong, ACS Mater. Lett. 3, 912–920 (2021). https://doi.org/10.1021/acsmaterialslett.1c00128

    CAS  Article  Google Scholar 

  103. Q. Du, L. Liu, R. Tang, J. Ai, Z. Wang, Q. Fu, C. Li, Y. Chen, X. Feng, Adv. Mater. Technol. 6, 2100122 (2021). https://doi.org/10.1002/admt.202100122

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology through the Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD) under the research project entitled “Up-Scaled Synthesis of Metal Nanowires and their Application in Transparent Metal Nanowire Touch Panel”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Donnabelle L. Balela.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuasay, L.O.M., Salazar, F.L.M. & Balela, M.D.L. Flexible tactile sensors based on silver nanowires: material synthesis, microstructuring, assembly, performance, and applications. emergent mater. 5, 51–76 (2022). https://doi.org/10.1007/s42247-022-00371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00371-1

Keywords

  • Silver nanowires
  • Tactile sensors
  • Microstructuring
  • Assembly
  • Fabrication