Skip to main content
Log in

Hydrothermal synthesis of nitrogen-doped graphene quantum dots as a fluorescent probe to detect mercury (II) ions in an aqueous sample

Emergent Materials Aims and scope Submit manuscript

Abstract

The N-doped graphene quantum dots (N-GQDs) with a high quantum yield of 36.23% were synthesised through a facile hydrothermal method by using citric acid monohydrate (CA) and ethylenediamine (EDA) as the carbon and nitrogen precursors, respectively. The morphology and the surface functional group of N-GQDs were analysed by using Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) while the optical properties were observed with UV–Vis spectroscopy and photoluminescence spectroscopy (PL). The synthesised N-GQDs were reported to form in a spherical shape with an average particles size of 9.96 ± 4.4 nm based on the HRTEM analysis. Furthermore, the as-prepared N-GQDs emitted a bright blue fluorescence emission with an excitation-independent fluorescence emission at 440 nm with the excitation wavelength at 340 nm. Linear regression between fluorescence intensity and Hg2+ ions at different concentrations was obtained and the limit of detection (LOD) and the limit of quantification (LOQ) were calculated as 2.46 μM and 7.45 μM, respectively. In addition, the fluorescence quenching effect that occurs in the interaction between Hg2+ ions and N-GQDs corresponded to the dynamic quenching mechanism. The higher selectivity towards Hg2+ ions proved that this synthesised N-GQDs could be used as a fluorescent probe to detect Hg2+ ions in an aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Z. Yan, X. Qu, Q. Niu, C. Tian, C. Fan, B. Ye, Anal. Methods 8(7), 1565–1571 (2016). https://doi.org/10.1039/x0xx00000x

    Article  Google Scholar 

  2. R. Zhang, W. Chen, Biosens. Bioelectron. 55, 83–90 (2013). https://doi.org/10.1016/j.bios.2013.11.074

    Article  CAS  Google Scholar 

  3. Y. Yang, X. Gou, J. Blecha, H. Cao, Tetrahedron Lett. 51(26), 3422–3425 (2010). https://doi.org/10.1016/j.tetlet.2010.04.100

    Article  CAS  Google Scholar 

  4. F.S. Awad, K.M. AbouZied, W.M. Abou El-Maaty, A.M. El-Wakil, M. Samy El-Shall, Arab. J. Chem. 13(1), 2659–2670 (2020). https://doi.org/10.1016/j.arabjc.2018.06.018

    Article  CAS  Google Scholar 

  5. G. Azeh Engwa, P. Udoka Ferdinand, F. Nweke Nwalo, and M. N. IntechOpen, (2019). https://doi.org/10.5772/intechopen.82511

  6. S. Sharma, A. Bhattacharya, Appl. Water Sci. 7(3), 1043–1067 (2017). https://doi.org/10.1007/s13201-016-0455-7

    Article  CAS  Google Scholar 

  7. P. Hajeb, S. Jinap, and A. Ismail, vol. 220. New York, NY: Springer New York, (2012). https://doi.org/10.1007/978-1-4614-3414-6

  8. H.H. Harris, I.J. Pickering, G.N. George, Science 301(5637), 1203 (2003). https://doi.org/10.1126/science.1085941

    Article  CAS  Google Scholar 

  9. N.T.N. Anh, A.D. Chowdhury, R. Doong, Sensors Actuators B Chem. 252, 1169–1178 (2017). https://doi.org/10.1016/j.snb.2017.07.177

    Article  CAS  Google Scholar 

  10. Y. Yang et al., Mater. Res. Express 6(9)(2019). https://doi.org/10.1088/2053-1591/ab3006

  11. B. Passariello, M. Barbaro, S. Quaresima, A. Casciello, A. Marabini, Microchem. J. 54(4), 348–354 (1996). https://doi.org/10.1006/mchj.1996.0110

    Article  CAS  Google Scholar 

  12. S. Zhu, B. Chen, M. He, T. Huang, B. Hu, Talanta 171, 213–219 (2017). https://doi.org/10.1016/j.talanta.2017.04.068

    Article  CAS  Google Scholar 

  13. E. Yavuz, Ş Tokalıoğlu, Ş Patat, Microchem. J. 142(April), 85–93 (2018). https://doi.org/10.1016/j.microc.2018.06.019

    Article  CAS  Google Scholar 

  14. P. Hu et al., Microchem. J. 143(August), 228–233 (2018). https://doi.org/10.1016/j.microc.2018.08.013

    Article  CAS  Google Scholar 

  15. C.F. Harrington, TrAC - Trends Anal. Chem. 19(2–3), 167–179 (2000). https://doi.org/10.1016/S0165-9936(99)00190-9

    Article  CAS  Google Scholar 

  16. J. Duan, J. Zhan, Sci. China Mater. 58(3), 223–240 (2015). https://doi.org/10.1007/s40843-015-0031-8

    Article  CAS  Google Scholar 

  17. A. Hasan et al., Talanta 215(March), 120939 (2020). https://doi.org/10.1016/j.talanta.2020.120939

    Article  CAS  Google Scholar 

  18. Y. Lu et al., Microchim. Acta 183(8), 2481–2489 (2016). https://doi.org/10.1007/s00604-016-1886-4

    Article  CAS  Google Scholar 

  19. H. Yang, Y. Xiong, P. Zhang, L. Su, F. Ye, Anal. Methods 7(11), 4596–4601 (2015). https://doi.org/10.1039/c5ay00633c

    Article  CAS  Google Scholar 

  20. N.A. Azmi, S.H. Ahmad, S.C. Low, RSC Adv. 8(1), 251–261 (2018). https://doi.org/10.1039/c7ra11450h

    Article  CAS  Google Scholar 

  21. Y. Chen et al., Microchim. Acta 177(3–4), 341–348 (2012). https://doi.org/10.1007/s00604-012-0777-6

    Article  CAS  Google Scholar 

  22. M.J. Schnermann, Nature 551(7679), 176–177 (2017). https://doi.org/10.1038/nature24755

    Article  CAS  Google Scholar 

  23. Y.L. Pak, Y. Wang, Q. Xu, Coord. Chem. Rev. 433, 213745 (2021). https://doi.org/10.1016/j.ccr.2020.213745

    Article  CAS  Google Scholar 

  24. A. Salinas-Castillo et al., Chem. Commun. 49(11), 1103–1105 (2013). https://doi.org/10.1039/c2cc36450f

    Article  CAS  Google Scholar 

  25. H. Li, Y. Zhang, X. Wang, Z. Gao, Microchim. Acta 160(1–2), 119–123 (2008). https://doi.org/10.1007/s00604-007-0816-x

    Article  CAS  Google Scholar 

  26. Z. Qian et al., RSC Adv. 3(34), 14571–14579 (2013). https://doi.org/10.1039/c3ra42066c

    Article  CAS  Google Scholar 

  27. X. Deng, Y. Feng, H. Li, Z. Du, Q. Teng, H. Wang, Particuology 41, 94–100 (2018). https://doi.org/10.1016/j.partic.2017.12.009

    Article  CAS  Google Scholar 

  28. J. Ju, R. Zhang, S. He, W. Chen, RSC Adv. 4(94), 52583–52589 (2014). https://doi.org/10.1039/c4ra10601f

    Article  CAS  Google Scholar 

  29. Y. Liu et al., Microchim. Acta 186(3), 4–11 (2019). https://doi.org/10.1007/s00604-019-3249-4

    Article  CAS  Google Scholar 

  30. C. Hu, D. Liu, Y. Xiao, and L. Dai, vol. 28, no. 2. Elsevier B.V., pp. 121–132,( 2018). https://doi.org/10.1016/j.pnsc.2018.02.001.

  31. Y. Du, S. Guo, Nanoscale 8(5), 2532–2543 (2016). https://doi.org/10.1039/c5nr07579c

    Article  CAS  Google Scholar 

  32. H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2(5), 781–794 (2012). https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  33. Y. Ma et al., Talanta 196(October 2018), 563–571 (2019). https://doi.org/10.1016/j.talanta.2019.01.001

    Article  CAS  Google Scholar 

  34. R. Liu, D. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 133(39), 15221–15223 (2011). https://doi.org/10.1021/ja204953k

    Article  CAS  Google Scholar 

  35. K. Li et al., J. Mater. Chem. B 5(25), 4811–4826 (2017). https://doi.org/10.1039/c7tb01073g

    Article  CAS  Google Scholar 

  36. A. Sharma, J. Das, J. Nanobiotechnol. 17(1), 1–24 (2019). https://doi.org/10.1186/s12951-019-0525-8

    Article  CAS  Google Scholar 

  37. P. Ramachandran, C.Y. Lee, R.A. Doong, C.E. Oon, N.T. Kim Thanh, H.L. Lee, RSC Adv. 10(37), 21795–21805 (2020). https://doi.org/10.1039/d0ra02907f

    Article  CAS  Google Scholar 

  38. T. Van Tam, N.B. Trung, H.R. Kim, J.S. Chung, W.M. Choi, Sensors Actuators. B Chem. 202, 568–573 (2014). https://doi.org/10.1016/j.snb.2014.05.045

    Article  CAS  Google Scholar 

  39. C. Zhao, Y. Jiao, J. Hua, J. Yang, Y. Yang, J. Fluoresc. 28(1), 269–276 (2018). https://doi.org/10.1007/s10895-017-2189-9

    Article  CAS  Google Scholar 

  40. F. Lu et al., Int. J. Opt. 2019, 1–9 (2019). https://doi.org/10.1155/2019/8724320

    Article  CAS  Google Scholar 

  41. F. Zu et al., Microchim. Acta 184(7), 1899–1914 (2017). https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  42. D. Tang et al., Nanoscale 10(18), 8477–8482 (2018). https://doi.org/10.1039/c8nr01355a

    Article  CAS  Google Scholar 

  43. K. Nawara, J. Waluk, Anal. Chem. 91(8), 5389–5394 (2019). https://doi.org/10.1021/acs.analchem.9b00583

    Article  CAS  Google Scholar 

  44. O. Bunkoed, P. Kanatharana, Luminescence 30(7), 1083–1089 (2015). https://doi.org/10.1002/bio.2862

    Article  CAS  Google Scholar 

  45. L. Tang, R. Ji, X. Li, K.S. Teng, S.P. Lau, J. Mater. Chem. C 1(32), 4908–4915 (2013). https://doi.org/10.1039/c3tc30877d

    Article  CAS  Google Scholar 

  46. S. Krukowski, M. Karasiewicz, W. Kolodziejski, J. Food Drug Anal. 25(3), 717–722 (2017). https://doi.org/10.1016/j.jfda.2017.01.009

    Article  CAS  Google Scholar 

  47. B. Zheng et al., Nanophotonics 6(1), 259–267 (2017). https://doi.org/10.1515/nanoph-2016-0102

    Article  CAS  Google Scholar 

  48. Y. Dong et al., Angew. Chem. Int. Ed. 52(30), 7800–7804 (2013). https://doi.org/10.1002/anie.201301114

    Article  CAS  Google Scholar 

  49. B. Shi, L. Zhang, C. Lan, J. Zhao, Y. Su, S. Zhao, Talanta 142, 131–139 (2015). https://doi.org/10.1016/j.talanta.2015.04.059

    Article  CAS  Google Scholar 

  50. Z. Wang et al., Diam. Relat. Mater. 104(January), 107749 (2020). https://doi.org/10.1016/j.diamond.2020.107749

    Article  CAS  Google Scholar 

  51. P. Tian, L. Tang, K.S. Teng, S.P. Lau, Mater. Today Chem. 10, 221–258 (2018). https://doi.org/10.1016/j.mtchem.2018.09.007

    Article  CAS  Google Scholar 

  52. Z. Yang et al., Nano-Micro Lett. 5(4), 247–259 (2013). https://doi.org/10.5101/nml.v5i4.p247-259

    Article  CAS  Google Scholar 

  53. M. Kaur, M. Kaur, V.K. Sharma, Adv. Colloid Interface Sci. 259, 44–64 (2018). https://doi.org/10.1016/j.cis.2018.07.001

    Article  CAS  Google Scholar 

  54. L. Li, T. Dong, J. Mater. Chem. C 6(30), 7944–7970 (2018). https://doi.org/10.1039/c7tc05878k

    Article  CAS  Google Scholar 

  55. H. Zhang et al., Anal. Chem. 86(19), 9846–9852 (2014). https://doi.org/10.1021/ac502446m

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by USM Research University Individual (RUI) Grant (1001/PKimia/8011086).

Funding

This work is financially supported by USM Research University Individual (RUI) Grant (1001/PKimia/8011086).

Author information

Authors and Affiliations

Authors

Contributions

H.L.L. and P.J. contributed to the study conception and design. Material preparation, data collection, and analysis were performed by A.S.A. and P.R. The first draft of the manuscript was written by A.S.A. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hooi Ling Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 347 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awalludin, A.S., Ramachandran, P., Jarujamrus, P. et al. Hydrothermal synthesis of nitrogen-doped graphene quantum dots as a fluorescent probe to detect mercury (II) ions in an aqueous sample. emergent mater. 5, 133–143 (2022). https://doi.org/10.1007/s42247-022-00365-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00365-z

Keywords

Navigation