Skip to main content

Mini-review on all-inorganic lead-based perovskite solar cells: challenges and opportunities for production and upscaling

Abstract

Perovskite photovoltaic solar cells have gained popularity throughout the past few years. They have become the subject of multiple research studies due to their ability to achieve high efficiencies, specifically all-inorganic perovskite solar cells. They demonstrate a record operational lifetime and are also cheap to manufacture and highly efficient. This paper intends to build on the existing knowledge and provide a detailed summary of how these perovskites work and the technology behind as well as the various fabrication methods. The review will also consider the production challenges while presenting upscaling alternatives to overcome them.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Y. Bensouda, Y. Boudihaj, N. Sebti et al., Perovskite photovoltaic tracking systems for efficient irrigation in the agricultural field: Morocco case study, in 2021 IEEE International Conference on Mechatronics and Automation (ICMA). (IEEE, Takamatsu, 2021), pp. 987–992

    Chapter  Google Scholar 

  2. D. Barrit, Y. Salih-Alj, Ralos car: solar powered car with a hybrid backup system, in 2012 IEEE Symposium on Industrial Electronics and Applications. (IEEE, Bandung, 2012), pp. 224–229

    Chapter  Google Scholar 

  3. P. Farhadi, M. Sedaghat, S. Sharifi, B. Taheri, Power point tracking in photovoltaic systems by sliding mode control, in 2017 10th International Symposium on Advanced Topics in Electrical Engineering (ATEE). (IEEE, Bucharest, 2017), pp. 781–785

    Chapter  Google Scholar 

  4. G. Tumen-Ulzii, T. Matsushima, C. Adachi, Mini-review on efficiency and stability of perovskite solar cells with Spiro-OMeTAD hole transport layer: recent progress and perspectives. Energy Fuels 35, 18915–18927 (2021). https://doi.org/10.1021/acs.energyfuels.1c02190

    CAS  Article  Google Scholar 

  5. P. Roy, N.K. Sinha, A. Khare, Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments, in Hybrid Perovskite Composite Materials. (Elsevier, Amsterdam, 2021), pp. 239–257

    Chapter  Google Scholar 

  6. M.-C. Tang, Y. Fan, D. Barrit et al., Efficient hybrid mixed-ion perovskite photovoltaics: In Situ Diagnostics of the Roles of Cesium and Potassium Alkali Cation Addition. Sol RRL 4, 2000272 (2020). https://doi.org/10.1002/solr.202000272

    CAS  Article  Google Scholar 

  7. J. Chen, W.C.H. Choy, Efficient and stable all-inorganic perovskite solar cells. Sol RRL 4, 2000408 (2020). https://doi.org/10.1002/solr.202000408

    CAS  Article  Google Scholar 

  8. T.-Y. Hwang, Y. Choi, Y. Song et al., A noble gas sensor platform: linear dense assemblies of single-walled carbon nanotubes (LACNTs) in a multi-layered ceramic/metal electrode system (MLES). J Mater Chem C 6, 972–979 (2018). https://doi.org/10.1039/C7TC03576D

    CAS  Article  Google Scholar 

  9. J. Li, H.-L. Cao, W.-B. Jiao et al., Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat Commun 11, 310 (2020). https://doi.org/10.1038/s41467-019-13910-y

    CAS  Article  Google Scholar 

  10. T. Ma, S. Wang, Y. Zhang et al., The development of all-inorganic CsPbX3 perovskite solar cells. J Mater Sci 55, 464–479 (2020). https://doi.org/10.1007/s10853-019-03974-y

    CAS  Article  Google Scholar 

  11. C. Wehrenfennig, G.E. Eperon, M.B. Johnston et al., High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26, 1584–1589 (2014). https://doi.org/10.1002/adma.201305172

    CAS  Article  Google Scholar 

  12. N.J. Jeon, J.H. Noh, W.S. Yang et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015). https://doi.org/10.1038/nature14133

    CAS  Article  Google Scholar 

  13. N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18, 65–72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007

    CAS  Article  Google Scholar 

  14. W. Yu, X. Sun, M. Xiao et al., Recent advances on interface engineering of perovskite solar cells. Nano Res (2021). https://doi.org/10.1007/s12274-021-3488-7

    Article  Google Scholar 

  15. B. Cai, X. Yang, Z. Yu et al., Unveiling the light soaking effects of the CsPbI3 perovskite solar cells. J. Power Sources 472, 228506 (2020). https://doi.org/10.1016/j.jpowsour.2020.228506

    CAS  Article  Google Scholar 

  16. S. Thomas, A. Thankappan, Perovskite photovoltaics: basic to advanced concepts and implementation (Academic Press, London, Cambridge, 2018)

    Google Scholar 

  17. Barrit D (2019) In situ investigation of the effect of solvation state of lead iodide and the influence of different cations and halides on the two-step hybrid perovskite solar cells formation. 201

  18. M.-C. Tang, Y. Fan, D. Barrit et al., Ambient blade coating of mixed cation, mixed halide perovskites without dripping: in situ investigation and highly efficient solar cells. J Mater Chem A 8, 1095–1104 (2020). https://doi.org/10.1039/C9TA12890E

    CAS  Article  Google Scholar 

  19. L. Atourki, E. Vega, B. Marí et al., Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3−xBrx (0 ≤ x ≤ 1) films. Appl. Surf. Sci. 371, 112–117 (2016). https://doi.org/10.1016/j.apsusc.2016.02.207

    CAS  Article  Google Scholar 

  20. Y. Cai, S. Wang, M. Sun et al., Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Org. Electron. 53, 249–255 (2018). https://doi.org/10.1016/j.orgel.2017.11.045

    CAS  Article  Google Scholar 

  21. H.B. Lee, N. Kumar, B. Tyagi et al., Bulky organic cations engineered lead-halide perovskites: a review on dimensionality and optoelectronic applications. Mater Today Energy 21, 100759 (2021). https://doi.org/10.1016/j.mtener.2021.100759

    CAS  Article  Google Scholar 

  22. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509

    CAS  Article  Google Scholar 

  23. M.T. Sebastian, Cation-deficient perovskites, in Dielectric Materials for Wireless Communication. (Elsevier, Amsterdam, 2008), pp. 335–360

    Chapter  Google Scholar 

  24. Y. Chen, L. Zhang, Y. Zhang et al., Large-area perovskite solar cells – a review of recent progress and issues. RSC Adv 8, 10489–10508 (2018). https://doi.org/10.1039/C8RA00384J

    CAS  Article  Google Scholar 

  25. J.-P. Correa-Baena, A. Abate, M. Saliba et al., The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci 10, 710–727 (2017). https://doi.org/10.1039/C6EE03397K

    CAS  Article  Google Scholar 

  26. K. Wang, M. Tang, H.X. Dang et al., Kinetic stabilization of the sol–gel state in perovskites enables facile processing of high-efficiency solar cells. Adv Mater 31, 1808357 (2019). https://doi.org/10.1002/adma.201808357

    CAS  Article  Google Scholar 

  27. H.X. Dang, K. Wang, M. Ghasemi et al., Multi-cation synergy suppresses phase segregation in mixed-halide perovskites. Joule 3, 1746–1764 (2019). https://doi.org/10.1016/j.joule.2019.05.016

    CAS  Article  Google Scholar 

  28. D. Barrit, P. Cheng, K. Darabi et al., Room-temperature partial conversion of α-FAPbI 3 perovskite phase via PbI 2 solvation enables high-performance solar cells. Adv Funct Mater 30, 1907442 (2020). https://doi.org/10.1002/adfm.201907442

    CAS  Article  Google Scholar 

  29. M. Becker, T. Klüner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans 45, 93–97 (2016). https://doi.org/10.1039/C5DT04163E

    CAS  Article  Google Scholar 

  30. K. Liu, S. Yuan, Y. Xian et al., Architecturing 1D–2D-3D multidimensional coupled CsPbI 2 Br perovskites toward highly effective and stable solar cells. Small 17, 2100888 (2021). https://doi.org/10.1002/smll.202100888

    CAS  Article  Google Scholar 

  31. V.M. Goldschmidt, Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926). https://doi.org/10.1007/BF01507527

    CAS  Article  Google Scholar 

  32. D.B. Mitzi, K. Chondroudis, C.R. Kagan, Design, structure, and optical properties of organic−inorganic perovskites containing an oligothiophene chromophore. Inorg Chem 38, 6246–6256 (1999). https://doi.org/10.1021/ic991048k

    CAS  Article  Google Scholar 

  33. H. Chen, M. Li, B. Wang et al., Structure, electronic and optical properties of CsPbX3 halide perovskite: a first-principles study. J Alloy Compd 862, 158442 (2021). https://doi.org/10.1016/j.jallcom.2020.158442

    CAS  Article  Google Scholar 

  34. X. Zhang, M.E. Turiansky, C.G. Van de Walle, All-inorganic halide perovskites as candidates for efficient solar cells. Cell Rep Phys Sci 2, 100604 (2021). https://doi.org/10.1016/j.xcrp.2021.100604

    CAS  Article  Google Scholar 

  35. W. Travis, E.N.K. Glover, H. Bronstein et al., On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 7, 4548–4556 (2016). https://doi.org/10.1039/C5SC04845A

    CAS  Article  Google Scholar 

  36. T. Ishigaki, Z.S. Nikolic, T. Watanabe et al., Lattice energy calculation for quantitatively-modeled perovskite distortion. Solid State Ionics 180, 475–479 (2009). https://doi.org/10.1016/j.ssi.2008.12.017

    CAS  Article  Google Scholar 

  37. O. Almora, D. Baran, G.C. Bazan et al., Device performance of emerging photovoltaic materials (version 1). Adv Energy Mater 11, 2002774 (2021). https://doi.org/10.1002/aenm.202002774

    CAS  Article  Google Scholar 

  38. S. Yoon, H. Kim, E.-Y. Shin et al., Enhanced hole extraction by interaction between CuI and MoO3 in the hole transport layer of organic photovoltaic devices. Org. Electron. 32, 200–207 (2016). https://doi.org/10.1016/j.orgel.2016.02.036

    CAS  Article  Google Scholar 

  39. K. Mahmood, S. Sarwar, M.T. Mehran, Current status of electron transport layers in perovskite solar cells: materials and properties. RSC Adv 7, 17044–17062 (2017). https://doi.org/10.1039/C7RA00002B

    CAS  Article  Google Scholar 

  40. O. Rana, R. Srivastava, R. Grover et al., Charge transport studies in thermally evaporated 2,2′,7,7′-tetrakis-(N, N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (spiro-MeOTAD) thin film. Synth. Met. 161, 828–832 (2011). https://doi.org/10.1016/j.synthmet.2011.02.008

    CAS  Article  Google Scholar 

  41. K. Jäger, L. Korte, B. Rech, S. Albrecht, Numerical optical optimization of monolithic planar perovskite-silicon tandem solar cells with regular and inverted device architectures. Opt Express 25, A473 (2017). https://doi.org/10.1364/OE.25.00A473

    Article  Google Scholar 

  42. R. Lin, J. Xu, M. Wei, Y. Wang, All-perovskite tandem solar cells with improved grain surface passivation. Nature (2022). https://doi.org/10.1038/s41586-021-04372-8

    Article  Google Scholar 

  43. W. Chen, Y. Zhu, J. Xiu, G. Chen, Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy (2022). https://doi.org/10.1038/s41560-021-00966-8

    Article  Google Scholar 

  44. M. Xiaohui, Y. Liqun, Z. Shijian et al., All-inorganic perovskite solar cells: status and future. Progr Chem 32, 1608 (2020). https://doi.org/10.7536/PC200313

    Article  Google Scholar 

  45. F. Urbain, V. Smirnov, J.-P. Becker et al., Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting. Energy Environ Sci 9, 145–154 (2016). https://doi.org/10.1039/C5EE02393A

    CAS  Article  Google Scholar 

  46. P. Wang, Y. Wu, B. Cai et al., Solution-processable perovskite solar cells toward commercialization: progress and challenges. Adv Funct Mater 29, 1807661 (2019). https://doi.org/10.1002/adfm.201807661

    CAS  Article  Google Scholar 

  47. H. Peng, M. Cai, S. Ma et al., Fabrication and stability of all-inorganic perovskite solar cells. Progr Chem 33, 136 (2021). https://doi.org/10.7536/PC200652

    CAS  Article  Google Scholar 

  48. J. Liang, C. Wang, Y. Wang et al., All-inorganic perovskite solar cells. J Am Chem Soc 138, 15829–15832 (2016). https://doi.org/10.1021/jacs.6b10227

    CAS  Article  Google Scholar 

  49. R. Montecucco, E. Quadrivi, R. Po, G. Grancini, All-inorganic cesium-based hybrid perovskites for efficient and stable solar cells and modules. Adv Energy Mater 11, 2100672 (2021). https://doi.org/10.1002/aenm.202100672

    CAS  Article  Google Scholar 

  50. G.E. Eperon, G.M. Paternò, R.J. Sutton et al., Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A 3, 19688–19695 (2015). https://doi.org/10.1039/C5TA06398A

    CAS  Article  Google Scholar 

  51. X. Pu, J. Han, S. Wang et al., Surface modification with ionic liquid for efficient CsPbI2Br perovskite solar cells. J Mater 7, 1039–1048 (2021). https://doi.org/10.1016/j.jmat.2021.02.004

    Article  Google Scholar 

  52. J. Tian, Q. Xue, Q. Yao et al., Inorganic halide perovskite solar cells: progress and challenges. Adv Energy Mater 10, 2000183 (2020). https://doi.org/10.1002/aenm.202000183

    CAS  Article  Google Scholar 

  53. H. Lin, C. Chen, B. Hsu et al., Efficient cesium lead halide perovskite solar cells through alternative thousand-layer rapid deposition. Adv Funct Mater 29, 1905163 (2019). https://doi.org/10.1002/adfm.201905163

    CAS  Article  Google Scholar 

  54. S.S. Mali, J.V. Patil, C.K. Hong, Hot-air-assisted fully air-processed barium incorporated CsPbI 2 Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells. Nano Lett 19, 6213–6220 (2019). https://doi.org/10.1021/acs.nanolett.9b02277

    CAS  Article  Google Scholar 

  55. C.F.J. Lau, X. Deng, Q. Ma et al., CsPbIBr 2 perovskite solar cell by spray-assisted deposition. ACS Energy Lett 1, 573–577 (2016). https://doi.org/10.1021/acsenergylett.6b00341

    CAS  Article  Google Scholar 

  56. C.-Y. Chen, H.-Y. Lin, K.-M. Chiang et al., All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv Mater 29, 1605290 (2017). https://doi.org/10.1002/adma.201605290

    CAS  Article  Google Scholar 

  57. I.A. Howard, T. Abzieher, I.M. Hossain et al., Coated and printed perovskites for photovoltaic applications. Adv Mater 31, 1806702 (2019). https://doi.org/10.1002/adma.201806702

    CAS  Article  Google Scholar 

  58. H. Zai, D. Zhang, L. Li et al., Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport. J Mater Chem A 6, 23602–23609 (2018). https://doi.org/10.1039/C8TA09859J

    CAS  Article  Google Scholar 

  59. G. Yin, H. Zhao, H. Jiang et al., Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% efficiency. Adv Funct Mater 28, 1803269 (2018). https://doi.org/10.1002/adfm.201803269

    CAS  Article  Google Scholar 

  60. J.I. Khan, A.D. Sheikh, M.A. Alamoudi et al., Impact of residual lead iodide on photophysical properties of lead triiodide perovskite solar cells. Energy Technol 8, 1900627 (2020). https://doi.org/10.1002/ente.201900627

    CAS  Article  Google Scholar 

  61. B. Yu, H. Zhang, J. Wu et al., Solvent-engineering toward CsPb(IxBr 1–x)3 films for high-performance inorganic perovskite solar cells. J Mater Chem A 6, 19810–19816 (2018). https://doi.org/10.1039/C8TA07968D

    CAS  Article  Google Scholar 

  62. W. Zhu, Q. Zhang, C. Zhang et al., Aged precursor solution toward low-temperature fabrication of efficient carbon-based all-inorganic planar CsPbIBr 2 perovskite solar cells. ACS Appl Energy Mater 1, 4991–4997 (2018). https://doi.org/10.1021/acsaem.8b00972

    CAS  Article  Google Scholar 

  63. J. Schlipf, P. Docampo, C.J. Schaffer et al., A closer look into two-step perovskite conversion with X-ray scattering. J Phys Chem Lett 6, 1265–1269 (2015). https://doi.org/10.1021/acs.jpclett.5b00329

    CAS  Article  Google Scholar 

  64. Q. Tai, K.-C. Tang, F. Yan, Recent progress of inorganic perovskite solar cells. Energy Environ Sci 12, 2375–2405 (2019). https://doi.org/10.1039/C9EE01479A

    CAS  Article  Google Scholar 

  65. Q. Chen, H. Zhou, Z. Hong et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136, 622–625 (2014). https://doi.org/10.1021/ja411509g

    CAS  Article  Google Scholar 

  66. S.S. Mali, J.V. Patil, P.S. Shinde et al., Fully air-processed dynamic hot-air-assisted M:CsPbI2Br (M: Eu2+, In3+) for stable inorganic perovskite solar cells. Matter 4, 635–653 (2020). https://doi.org/10.1016/j.matt.2020.11.008

    CAS  Article  Google Scholar 

  67. J.V. Patil, S.S. Mali, C.K. Hong, A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency. Solar RRL 4, 2000164 (2020). https://doi.org/10.1002/solr.202000164

    CAS  Article  Google Scholar 

  68. S.S. Mali, J.V. Patil, C.K. Hong, Simultaneous improved performance and thermal stability of planar metal ion incorporated CsPbI2Br all-inorganic perovskite solar cells based on MgZnO nanocrystalline electron transporting layer. Adv. Energy Mater. 10, 1902708 (2020). https://doi.org/10.1002/aenm.201902708

    CAS  Article  Google Scholar 

  69. M.M. Tavakoli, R. Tavakoli, All-vacuum-processing for fabrication of efficient, large-scale, and flexible inverted perovskite solar cells. Phys Status Solidi RRL 15, 2000449 (2021). https://doi.org/10.1002/pssr.202000449

    CAS  Article  Google Scholar 

  70. S. Wang, X. Li, J. Wu et al., Fabrication of efficient metal halide perovskite solar cells by vacuum thermal evaporation: a progress review. Curr. Opin. Electrochem. 11, 130–140 (2018). https://doi.org/10.1016/j.coelec.2018.10.006

    CAS  Article  Google Scholar 

  71. M.H. Khalaf, K.D. Salim, Synthesis of CdCl2 thin films by vacuum thermal evaporation and studying the effect of silver doping on the optical properties. Mater Today Proc 47, 6197–6200 (2021). https://doi.org/10.1016/j.matpr.2021.05.159

    CAS  Article  Google Scholar 

  72. Q. Shi, Q. Wang, D. Zhang et al., Structural, optical and photoluminescence properties of Ga2O3 thin films deposited by vacuum thermal evaporation. J Lumin 206, 53–58 (2019). https://doi.org/10.1016/j.jlumin.2018.10.005

    CAS  Article  Google Scholar 

  73. W. Chen, J. Zhang, G. Xu et al., A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater 30, 1800855 (2018). https://doi.org/10.1002/adma.201800855

    CAS  Article  Google Scholar 

  74. Q. Ma, S. Huang, X. Wen et al., Hole transport layer free inorganic CsPbIBr 2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater 6, 1502202 (2016). https://doi.org/10.1002/aenm.201502202

    CAS  Article  Google Scholar 

  75. T. Chen, G. Tong, E. Xu et al., Accelerating hole extraction by inserting 2D Ti3C2-MXene interlayer to all inorganic perovskite solar cells with long-term stability. J Mater Chem A 7, 20597–20603 (2019). https://doi.org/10.1039/C9TA06035A

    CAS  Article  Google Scholar 

  76. S. Bonomi, L. Malavasi, Physical and chemical vapor deposition methods applied to all-inorganic metal halide perovskites. J Vac Sci Technol A 38, 060803 (2020). https://doi.org/10.1116/6.0000568

    CAS  Article  Google Scholar 

  77. S.F. Kistler, P.M. Schweizer, Liquid film coating: scientific principles and their technological implications (Chapman & Hall, London, 1997)

    Book  Google Scholar 

  78. Y. Fan, J. Fang, X. Chang et al., Scalable ambient fabrication of high-performance CsPbI2Br solar cells. Joule 3, 2485–2502 (2019). https://doi.org/10.1016/j.joule.2019.07.015

    CAS  Article  Google Scholar 

  79. X. Zuo, K. Chang, J. Zhao et al., Bubble-template-assisted synthesis of hollow fullerene-like MoS 2 nanocages as a lithium ion battery anode material. J Mater Chem A 4, 51–58 (2016). https://doi.org/10.1039/C5TA06869J

    CAS  Article  Google Scholar 

  80. C. Trudeau, P. Beaupré, M. Bolduc, S.G. Cloutier, All inkjet-printed perovskite-based bolometers. npj Flex Electron 4, 34 (2020). https://doi.org/10.1038/s41528-020-00097-2

    CAS  Article  Google Scholar 

  81. X. Chang, J. Fang, Y. Fan et al., Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy. Adv Mater 32, 2001243 (2020). https://doi.org/10.1002/adma.202001243

    CAS  Article  Google Scholar 

  82. B. Li, Y. Zhang, L. Fu et al., Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun 9, 1076 (2018). https://doi.org/10.1038/s41467-018-03169-0

    CAS  Article  Google Scholar 

  83. P. Wang, X. Zhang, Y. Zhou et al., Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat Commun 9, 2225 (2018). https://doi.org/10.1038/s41467-018-04636-4

    CAS  Article  Google Scholar 

  84. T. Zhang, M.I. Dar, G. Li et al., Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv (2017). https://doi.org/10.1126/sciadv.1700841

    Article  Google Scholar 

  85. Y. Wang, T. Zhang, M. Kan, Y. Zhao, Bifunctional stabilization of all-inorganic α-CsPbI 3 perovskite for 17% efficiency photovoltaics. J Am Chem Soc 140, 12345–12348 (2018). https://doi.org/10.1021/jacs.8b07927

    CAS  Article  Google Scholar 

  86. Q. Wang, X. Zheng, Y. Deng et al., Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1, 371–382 (2017). https://doi.org/10.1016/j.joule.2017.07.017

    CAS  Article  Google Scholar 

  87. K. Wang, Z. Jin, L. Liang et al., All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%. Nat Commun 9, 4544 (2018). https://doi.org/10.1038/s41467-018-06915-6

    CAS  Article  Google Scholar 

  88. J.K. Nam, S.U. Chai, W. Cha et al., Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett 17, 2028–2033 (2017). https://doi.org/10.1021/acs.nanolett.7b00050

    CAS  Article  Google Scholar 

  89. X. Chang, W. Li, L. Zhu et al., Carbon-based CsPbBr 3 perovskite solar cells: all-ambient processes and high thermal stability. ACS Appl Mater Interf 8, 33649–33655 (2016). https://doi.org/10.1021/acsami.6b11393

    CAS  Article  Google Scholar 

  90. H. Wang, H. Liu, W. Li et al., Inorganic perovskite solar cells based on carbon electrodes. Nano Energy 77, 105160 (2020). https://doi.org/10.1016/j.nanoen.2020.105160

    CAS  Article  Google Scholar 

  91. B. Zhang, W. Bi, Y. Wu et al., High-performance CsPbIBr 2 perovskite solar cells: effectively promoted crystal growth by antisolvent and organic ion strategies. ACS Appl Mater Interf 11, 33868–33878 (2019). https://doi.org/10.1021/acsami.9b09171

    CAS  Article  Google Scholar 

  92. H. Li, G. Tong, T. Chen et al., Interface engineering using a perovskite derivative phase for efficient and stable CsPbBr 3 solar cells. J Mater Chem A 6, 14255–14261 (2018). https://doi.org/10.1039/C8TA03811B

    CAS  Article  Google Scholar 

  93. L. Mi, Y. Zhang, T. Chen et al., Carbon electrode engineering for high efficiency all-inorganic perovskite solar cells. RSC Adv 10, 12298–12303 (2020). https://doi.org/10.1039/D0RA00288G

    CAS  Article  Google Scholar 

  94. S. Ullah, J. Wang, P. Yang et al., All-inorganic CsPbBr 3 perovskite: a promising choice for photovoltaics. Mater Adv 2, 646–683 (2021). https://doi.org/10.1039/D0MA00866D

    CAS  Article  Google Scholar 

  95. A. Ho-Baillie, M. Zhang, C.F.J. Lau et al., Untapped potentials of inorganic metal halide perovskite solar cells. Joule 3, 938–955 (2019). https://doi.org/10.1016/j.joule.2019.02.002

    CAS  Article  Google Scholar 

  96. M.A. Green, Y. Jiang, A.M. Soufiani, A. Ho-Baillie, Optical properties of photovoltaic organic–inorganic lead halide perovskites. J Phys Chem Lett 6, 4774–4785 (2015). https://doi.org/10.1021/acs.jpclett.5b01865

    CAS  Article  Google Scholar 

  97. M.K. Hossain, P. Guo, W. Qarony et al., Controllable optical emission wavelength in all-inorganic halide perovskite alloy microplates grown by two-step chemical vapor deposition. Nano Res 13, 2939–2949 (2020). https://doi.org/10.1007/s12274-020-2951-1

    CAS  Article  Google Scholar 

  98. M.A. Fadla, B. Bentria, T. Dahame, A. Benghia, First-principles investigation on the stability and material properties of all-inorganic cesium lead iodide perovskites CsPbI3 polymorphs. Physica B 585, 412118 (2020). https://doi.org/10.1016/j.physb.2020.412118

    CAS  Article  Google Scholar 

  99. M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr 3 Cells. J Phys Chem Lett 6, 2452–2456 (2015). https://doi.org/10.1021/acs.jpclett.5b00968

    CAS  Article  Google Scholar 

  100. R.J. Sutton, G.E. Eperon, L. Miranda et al., Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater 6, 1502458 (2016). https://doi.org/10.1002/aenm.201502458

    CAS  Article  Google Scholar 

  101. Y. Jiang, J. Yuan, Y. Ni et al., Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2, 1356–1368 (2018). https://doi.org/10.1016/j.joule.2018.05.004

    CAS  Article  Google Scholar 

  102. D. Ghosh, Md.Y. Ali, D.K. Chaudhary, S. Bhattacharyya, Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells. Sol. Energy Mater. Sol. Cells 185, 28–35 (2018). https://doi.org/10.1016/j.solmat.2018.05.002

    CAS  Article  Google Scholar 

  103. W. Xiang, S. Liu, W. Tress, A review on the stability of inorganic metal halide perovskites: challenges and opportunities for stable solar cells. Energy Environ Sci 14, 2090–2113 (2021). https://doi.org/10.1039/D1EE00157D

    CAS  Article  Google Scholar 

  104. Y. Ahmed, B. Khan, M. Bilal Faheem et al., Organic additives in all-inorganic perovskite solar cells and modules: from moisture endurance to enhanced efficiency and operational stability. J. Energy Chem. 67, 361–390 (2022). https://doi.org/10.1016/j.jechem.2021.09.047

    Article  Google Scholar 

  105. A.F. Akbulatov, SYu. Luchkin, L.A. Frolova et al., Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites. J Phys Chem Lett 8, 1211–1218 (2017). https://doi.org/10.1021/acs.jpclett.6b03026

    CAS  Article  Google Scholar 

  106. W. Xiang, Z. Wang, D.J. Kubicki et al., Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2019). https://doi.org/10.1016/j.joule.2018.10.008

    CAS  Article  Google Scholar 

  107. C.C. Stoumpos, M.G. Kanatzidis, The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc Chem Res 48, 2791–2802 (2015). https://doi.org/10.1021/acs.accounts.5b00229

    CAS  Article  Google Scholar 

  108. W. Xiang, W. Tress, Review on recent progress of all-inorganic metal halide perovskites and solar cells. Adv Mater 31, 1902851 (2019). https://doi.org/10.1002/adma.201902851

    CAS  Article  Google Scholar 

  109. C.C. Stoumpos, C.D. Malliakas, J.A. Peters et al., Crystal growth of the perovskite semiconductor CsPbBr 3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013). https://doi.org/10.1021/cg400645t

    CAS  Article  Google Scholar 

  110. F.-Z. Qiu, M.-H. Li, J.-J. Qi et al., Engineering inorganic lead halide perovskite deposition toward solar cells with efficiency approaching 20%. Aggregate 2, 66–83 (2021). https://doi.org/10.1002/agt2.19

    Article  Google Scholar 

  111. M. Tang, B. He, D. Dou et al., Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr 3 films with transition metal ions. Chem. Eng. J. 375, 121930 (2019). https://doi.org/10.1016/j.cej.2019.121930

    CAS  Article  Google Scholar 

  112. N.K. Noel, M. Congiu, A.J. Ramadan et al., Unveiling the influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule 1, 328–343 (2017). https://doi.org/10.1016/j.joule.2017.09.009

    CAS  Article  Google Scholar 

  113. Y. Wang, X. Liu, T. Zhang et al., The role of dimethylammonium iodide in CsPbI 3 perovskite fabrication: additive or dopant? Angew Chem Int Ed 58, 16691–16696 (2019). https://doi.org/10.1002/anie.201910800

    CAS  Article  Google Scholar 

  114. K.S. Kim, I.S. Jin, S.H. Park et al., Methylammonium iodide-mediated controlled crystal growth of CsPbI 2 Br films for efficient and stable all-inorganic perovskite solar cells. ACS Appl Mater Interf 12, 36228–36236 (2020). https://doi.org/10.1021/acsami.0c11047

    CAS  Article  Google Scholar 

  115. J. Wang, J. Zhang, Y. Zhou et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat Commun 11, 177 (2020). https://doi.org/10.1038/s41467-019-13909-5

    CAS  Article  Google Scholar 

  116. S. Fu, X. Li, L. Wan et al., Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%. Nano-Micro Lett 12, 170 (2020). https://doi.org/10.1007/s40820-020-00509-y

    CAS  Article  Google Scholar 

  117. W. Zhang, X. Liu, B. He et al., Interface engineering of imidazolium ionic liquids toward efficient and stable CsPbBr 3 perovskite solar cells. ACS Appl Mater Interfaces 12, 4540–4548 (2020). https://doi.org/10.1021/acsami.9b20831

    CAS  Article  Google Scholar 

  118. B. Conings, J. Drijkoningen, N. Gauquelin et al., Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv Energy Mater 5, 1500477 (2015). https://doi.org/10.1002/aenm.201500477

    CAS  Article  Google Scholar 

  119. E.M. Sanehira, A.R. Marshall, J.A. Christians et al., Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci Adv 3, aao4204 (2017). https://doi.org/10.1126/sciadv.aao4204

    CAS  Article  Google Scholar 

  120. D.-J. Xue, Y. Hou, S.-C. Liu et al., Regulating strain in perovskite thin films through charge-transport layers. Nat Commun 11, 1514 (2020). https://doi.org/10.1038/s41467-020-15338-1

    CAS  Article  Google Scholar 

  121. Y. Wang, T. Zhang, M. Kan et al., Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2, 2065–2075 (2018). https://doi.org/10.1016/j.joule.2018.06.013

    CAS  Article  Google Scholar 

  122. T. Wu, Y. Wang, Z. Dai et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31, 1900605 (2019). https://doi.org/10.1002/adma.201900605

    CAS  Article  Google Scholar 

  123. R. Peleg, The Perovskite Handbook, 2021st edn. (Lulu Press, North Carolina, 2020), p. 102

    Google Scholar 

  124. T. Niu, J. Lu, R. Munir et al., Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater 30, 1706576 (2018). https://doi.org/10.1002/adma.201706576

    CAS  Article  Google Scholar 

  125. I.S. Jin, B. Parida, J.W. Jung, Simultaneously enhanced efficiency and ambient stability of inorganic perovskite solar cells by employing tetramethylammonium chloride additive in CsPbI2Br. J. Mater. Sci. Technol. 102, 224–231 (2022). https://doi.org/10.1016/j.jmst.2021.05.084

    Article  Google Scholar 

  126. M.-C. Tang, D. Barrit, R. Munir et al., Bismuth-based perovskite-inspired solar cells: in situ diagnostics reveal similarities and differences in the film formation of bismuth- and lead-based films. Sol RRL 3, 1800305 (2019). https://doi.org/10.1002/solr.201800305

    CAS  Article  Google Scholar 

  127. Y. Cui, S. Wang, L. Ding, F. Hao, Green–solvent–processable perovskite solar cells. Adv Energy Sustain Res 2, 2000047 (2021). https://doi.org/10.1002/aesr.202000047

    Article  Google Scholar 

  128. A.J. Doolin, R.G. Charles, C.S.P. De Castro et al., Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbI 3) perovskite solar cells. Green Chem 23, 2471–2486 (2021). https://doi.org/10.1039/D1GC00079A

    CAS  Article  Google Scholar 

  129. X. Chang, Y. Fan, K. Zhao et al., Perovskite solar cells toward eco-friendly printing. Research 2021, 1–11 (2021). https://doi.org/10.34133/2021/9671892

    CAS  Article  Google Scholar 

  130. Y. Zhang, P. Wang, M.-C. Tang et al., Dynamical transformation of 2D perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J Am Chem Soc 141, 2684–2694 (2019)

    CAS  Article  Google Scholar 

  131. T. Wu, Z. Qin, Y. Wang et al., The main progress of perovskite solar cells in 2020–2021. Nano-Micro Lett 13, 152 (2021). https://doi.org/10.1007/s40820-021-00672-w

    CAS  Article  Google Scholar 

  132. J. Zhang, G. Hodes, Z. Jin, S. Liu, All-inorganic CsPbX 3 perovskite solar cells: progress and prospects. Angew Chem Int Ed 58, 15596–15618 (2019). https://doi.org/10.1002/anie.201901081

    CAS  Article  Google Scholar 

  133. S. Mazumdar, Y. Zhao, X. Zhang, Stability of perovskite solar cells: degradation mechanisms and remedies. FrontElectron 2, 712785 (2021). https://doi.org/10.3389/felec.2021.712785

    Article  Google Scholar 

  134. S. Masi, A.F. Gualdrón-Reyes, I. Mora-Seró, Stabilization of black perovskite phase in FAPbI 3 and CsPbI 3. ACS Energy Lett 5, 1974–1985 (2020). https://doi.org/10.1021/acsenergylett.0c00801

    CAS  Article  Google Scholar 

  135. D. Barrit, Y. Zhang, T. Yang et al., Sequential formation of tunable-bandgap mixed-halide lead-based perovskites: in situ investigation and photovoltaic devices. Sol RRL 5, 2000668 (2021). https://doi.org/10.1002/solr.202000668

    CAS  Article  Google Scholar 

  136. D. Barrit, P. Cheng, M. Tang et al., Impact of the solvation state of lead iodide on its two-step conversion to MAPbI 3: an in situ investigation. Adv Funct Mater 29, 1807544 (2019). https://doi.org/10.1002/adfm.201807544

    CAS  Article  Google Scholar 

  137. T. Niu, J. Lu, M.-C. Tang et al., High performance ambient-air-stable FAPbI 3 perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy Environ Sci 11, 3358–3366 (2018). https://doi.org/10.1039/C8EE02542H

    CAS  Article  Google Scholar 

  138. M. Que, Z. Dai, H. Yang et al., Quantum-dot-induced cesium-rich surface imparts enhanced stability to formamidinium lead iodide perovskite solar cells. ACS Energy Lett 4, 1970–1975 (2019). https://doi.org/10.1021/acsenergylett.9b01262

    CAS  Article  Google Scholar 

  139. D.P. McMeekin, G. Sadoughi, W. Rehman et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016). https://doi.org/10.1126/science.aad5845

    CAS  Article  Google Scholar 

  140. Q. Jiang, Y. Zhao, X. Zhang et al., Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13, 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dounya Barrit.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bensouda, Y., Barrit, D. Mini-review on all-inorganic lead-based perovskite solar cells: challenges and opportunities for production and upscaling. emergent mater. 5, 207–225 (2022). https://doi.org/10.1007/s42247-022-00364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00364-0

Keywords

  • Inorganic perovskite solar cells
  • Power conversion efficiency
  • Stability
  • Scalability