Skip to main content
Log in

Structural and morphological investigations of nanolayered double hydroxides as effective adsorbents of methyl orange

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This study aims to synthesize a new series of nanolayered double hydroxides (LDHs) containing zinc, cobalt, aluminum, and iron and study the influence of divalent cations (Zn2+, Co2+) in the composition on LDHs structure. The LDHs samples were prepared by coprecipitation by controlling the pH of the solution. Various analytical techniques have been used to investigate the structural and morphological characteristics of LDHs (including X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analyses, scanning electron microscopy, and energy-dispersive X-ray) and showed a detailed description of the influence of the composition on the structural organization of the LDHs. The obtained results showed a strong relationship between the composition of the LDHs phases and their structural properties. The LDHs materials were used to remove methyl orange (MO) dye from an aqueous solution. The influence of various parameters such as solution pH, initial dye concentration, and contact time on the adsorption process was studied. The pH influenced the sorption behavior of dye onto LDHs, with the best removal efficiency being observed in the pH range of 3–5. The adsorption capacity was increased with the increase of initial dye concentration. The adsorption kinetics of MO onto the LDHs were considerably rapid within the first 60 min, and it reached equilibrium at 240 min. Experimental results were fitted with the Langmuir models, with a high adsorption capacity of 1141.58, 936.75, 800.6, 733.17, and 623.07 mg g−1 for Zn–AlFe–CO3, Zn0.75Co0.25–AlFe–CO3, Zn0.5Co0.5–AlFe–CO3, Zn0.25Co0.75–AlFe–CO3, and Co–AlFe–CO3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.C. Vandevivere, R. Bianchi, W. Verstraete, Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J. Chem. Technol. Biotechnol. 72, 289 (1998). https://doi.org/10.1002/(sici)1097-4660(199808)72:4%3c289::aid-jctb905%3e3.0.co;2-#

    Article  CAS  Google Scholar 

  2. N. Barka, M. Abdennouri, M.E.L. Makhfouk, Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: kinetics, equilibrium and thermodynamics. J. Taiwan Inst. Chem. Eng. 42, 320 (2011). https://doi.org/10.1016/j.jtice.2010.07.004

    Article  CAS  Google Scholar 

  3. M. Khajeh, A.R. Oveisi, A. Barkhordar, Z. Sorinezami, Co-Fe-layered double hydroxide decorated amino-functionalized zirconium terephthalate metal-organic framework for removal of organic dyes from water samples. Spectrochim. Acta, Part A 234, 118270 (2020). https://doi.org/10.1016/j.saa.2020.118270

    Article  CAS  Google Scholar 

  4. B. Maazinejad, O. Mohammadnia, G.A.M. Ali, A.S.H. Makhlouf, M.N. Nadagouda, M. Sillanpää, A.M. Asiri, S. Agarwal, V.K. Gupta, H. Sadegh, Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics. J. Mol. Liq. 298, 112001 (2020). https://doi.org/10.1016/j.molliq.2019.112001

    Article  CAS  Google Scholar 

  5. H.H. Abdel Ghafar, G.A.M. Ali, O.A. Fouad, S.A. Makhlouf, Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalin. Water Treat. 53, 2980 (2015)

    Article  CAS  Google Scholar 

  6. S.M. SeyedArabi, R.S. Lalehloo, M.R.T.B. Olyai, G.A.M. Ali, H. Sadegh, Removal of congo red azo dye from aqueous solution by ZnO nanoparticles loaded on multiwall carbon nanotubes. Physica E 106, 150 (2019). https://doi.org/10.1016/j.physe.2018.10.030

    Article  CAS  Google Scholar 

  7. A. Gomaa Abdelgawad Mohammed, B. Ahmed, G. Vinod Kumar, N. Amr Ahmed, E.-M. Heba, K. Ramesh, S. Essam Ramadan, A. Hamed, C. Kwok Feng, High surface area mesoporous silica for hydrogen sulfide effective removal. Curr. Nanosci. 15, 1 (2019). https://doi.org/10.2174/1573413715666181205122307

    Article  CAS  Google Scholar 

  8. S.P. Lee, G.A.M. Ali, H. Algarni, K.F. Chong, Flake size-dependent adsorption of graphene oxide aerogel. J. Mol. Liq. 277, 175 (2018). https://doi.org/10.1016/j.molliq.2018.12.097

    Article  CAS  Google Scholar 

  9. O.A. Habeeb, R. Kanthasamy, G.A.M. Ali, S. Sethupathi, R.B.M. Yunus, Hydrogen sulfide emission sources, regulations, and removal techniques: a review. Rev. Chem. Eng. 34, 837 (2017). https://doi.org/10.1515/revce-2017-0004

    Article  CAS  Google Scholar 

  10. F. Cavani, F. Trifirò, A. Vaccari, Hydrotalcite-type anionic clays: preparation, properties and applications. Catal. Today 11, 173 (1991). https://doi.org/10.1016/0920-5861(91)80068-k

    Article  CAS  Google Scholar 

  11. S. Mandal, S. Mayadevi, Adsorption of fluoride ions by Zn–Al layered double hydroxides. Appl. Clay Sci. 40, 54 (2008). https://doi.org/10.1016/j.clay.2007.07.004

    Article  CAS  Google Scholar 

  12. K. Zargoosh, S. Kondori, M. Dinari, S. Mallakpour, Synthesis of layered double hydroxides containing a biodegradable amino acid derivative and their application for effective removal of cyanide from industrial wastes. Ind. Eng. Chem. Res. 54, 1093 (2015). https://doi.org/10.1021/ie504064k

    Article  CAS  Google Scholar 

  13. M. El-Abboubi, N. Taoufik, F.Z. Mahjoubi, A. Oussama, F. Kzaiber, N. Barka, Sorption of methyl orange dye by dodecyl-sulfate intercalated Mg-Al layered double hydroxides. Mater. Today Proc. 37, 3894 (2021). https://doi.org/10.1016/j.matpr.2020.08.602

    Article  CAS  Google Scholar 

  14. S. Mallakpour, M. Dinari, M. Hatami, Modification of Mg/Al-layered double hydroxide with l-aspartic acid containing dicarboxylic acid and its application in the enhancement of the thermal stability of chiral poly(amide-imide). RSC Adv. 4, 42114 (2014). https://doi.org/10.1039/C4RA05754F

    Article  CAS  Google Scholar 

  15. S. Mallakpour, M. Dinari, Intercalation of amino acid containing chiral dicarboxylic acid between Mg–Al layered double hydroxide. J. Therm. Anal. Calorim. 119, 1123 (2015). https://doi.org/10.1007/s10973-014-4166-8

    Article  CAS  Google Scholar 

  16. J.W. Boclair, P.S. Braterman, Layered Double Hydroxide Stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts. Chem. Mater. 11, 298 (1999). https://doi.org/10.1021/cm980523u

    Article  CAS  Google Scholar 

  17. S.V. Prasanna, P. Vishnu Kamath, Chromate uptake characteristics of the pristine layered double hydroxides of Mg with Al. Solid State Sci. 10, 260 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.09.023

    Article  CAS  Google Scholar 

  18. M. Daud, A. Hai, F. Banat, M.B. Wazir, M. Habib, G. Bharath, M.A. Al-Harthi, A review on the recent advances, challenges and future aspect of layered double hydroxides (LDH) – Containing hybrids as promising adsorbents for dyes removal. J. Mol. Liq. 288, 110989 (2019). https://doi.org/10.1016/j.molliq.2019.110989

    Article  CAS  Google Scholar 

  19. O.A. Habeeb, R. Kanthasamy, G.A.M. Ali, R.B.M. Yunus, Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin. Water Treat. 84, 205 (2017)

    Article  CAS  Google Scholar 

  20. S. Agarwal, H. Sadegh, M. Monajjemi, A.S.H. Makhlouf, G.A.M. Ali, A.O.H. Memar, R. Shahryari-ghoshekandi, I. Tyagi, V.K. Gupta, Efficient removal of toxic bromothymol blue and methylene blue from wastewater by polyvinyl alcohol. J. Mol. Liq. 218, 191 (2016). https://doi.org/10.1016/j.molliq.2016.02.060

    Article  CAS  Google Scholar 

  21. Y. Zhong, Q. Yang, K. Luo, X. Wu, X. Li, Y. Liu, W. Tang, G. Zeng, B. Peng, Fe(II)–Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate. J. Hazard. Mater. 250–251, 345 (2013). https://doi.org/10.1016/j.jhazmat.2013.01.081

    Article  CAS  Google Scholar 

  22. Y. Zhao, F. Li, R. Zhang, D.G. Evans, X. Duan, Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem. Mater. 14, 4286 (2002). https://doi.org/10.1021/cm020370h

    Article  CAS  Google Scholar 

  23. L. Chmielarz, M. Rutkowska, P. Kuśtrowski, M. Drozdek, Z. Piwowarska, B. Dudek, R. Dziembaj, M. Michalik, An influence of thermal treatment conditions of hydrotalcite-like materials on their catalytic activity in the process of N2O decomposition. J. Therm. Anal. Calorim. 105, 161 (2011). https://doi.org/10.1007/s10973-011-1284-4

    Article  CAS  Google Scholar 

  24. R. Gao, D. Yan, D.G. Evans, X. Duan, Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli-responsive phosphorescence and antiforgery applications. Nano Res. 10, 3606 (2017). https://doi.org/10.1007/s12274-017-1571-x

    Article  CAS  Google Scholar 

  25. R. Elmoubarki, W. Boumya, F.Z. Mahjoubi, A. Elhalil, M. Sadiq, N. Barka, Ni-Fe-SDS and Ni-Fe-SO4 layered double hydroxides: preparation, characterization and application in dyes removal. Mater. Today Proc. 37, 3871 (2021). https://doi.org/10.1016/j.matpr.2020.08.460

    Article  CAS  Google Scholar 

  26. P. Li, F. Lv, Z. Xu, G. Qi, Y. Zhang, Functions of surfactants in the one-step synthesis of surfactant-intercalated LDHs. J. Mater. Sci. 48, 5437 (2013). https://doi.org/10.1007/s10853-013-7337-2

    Article  CAS  Google Scholar 

  27. X. Tao, C. Yang, L. Huang, S. Shang, Novel plasma assisted preparation of ZnCuFeCr layered double hydroxides with improved photocatalytic performance of methyl orange degradation. Appl. Surf. Sci. 507, 145053 (2020). https://doi.org/10.1016/j.apsusc.2019.145053

    Article  CAS  Google Scholar 

  28. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976). https://doi.org/10.1107/s0567739476001551

    Article  Google Scholar 

  29. A.A.A. Ahmed, Z.A. Talib, M.Z.B. Hussein, A. Zakaria, Improvement of the crystallinity and photocatalytic property of zinc oxide as calcination product of Zn–Al layered double hydroxide. J. Alloys Compd. 539, 154 (2012). https://doi.org/10.1016/j.jallcom.2012.05.093

    Article  CAS  Google Scholar 

  30. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, M. Sadiq, S. Qourzal, N. Barka, Synthesis, characterization and efficient photocatalytic activity of novel Ca/ZnO-Al2O3 nanomaterial. Mater. Today Commun. 16, 194 (2018). https://doi.org/10.1016/j.mtcomm.2018.06.005

    Article  CAS  Google Scholar 

  31. S. Mallakpour, M. Dinari, Novel bionanocomposites of poly(vinyl alcohol) and modified chiral layered double hydroxides: synthesis, properties and a morphological study. Prog. Org. Coat. 77, 583 (2014). https://doi.org/10.1016/j.porgcoat.2013.11.021

    Article  CAS  Google Scholar 

  32. P. Benito, I. Guinea, F.M. Labajos, J. Rocha, V. Rives, Microwave-hydrothermally aged Zn, Al hydrotalcite-like compounds: influence of the composition and the irradiation conditions. Microporous Mesoporous Mater. 110, 292 (2008). https://doi.org/10.1016/j.micromeso.2007.06.013

    Article  CAS  Google Scholar 

  33. F.Z. Mahjoubi, A. Khalidi, A. Elhalil, N. Barka, Characteristics and mechanisms of methyl orange sorption onto Zn/Al layered double hydroxide intercalated by dodecyl sulfate anion. Sci. Afr. 6, e00216 (2019). https://doi.org/10.1016/j.sciaf.2019.e00216

    Article  Google Scholar 

  34. Y.-J. Lin, D.-Q. Li, D.G. Evans, X. Duan, Modulating effect of Mg–Al–CO3 layered double hydroxides on the thermal stability of PVC resin. Polym. Degrad. Stab. 88, 286 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.11.007

    Article  CAS  Google Scholar 

  35. S. Narayanan, K. Krishna, Hydrotalcite-supported palladium catalysts. Appl. Catal., A 174, 221 (1998). https://doi.org/10.1016/s0926-860x(98)00190-2

    Article  CAS  Google Scholar 

  36. M. José dos Reis, F. Silvério, J. Tronto, J.B. Valim, Effects of pH, temperature, and ionic strength on adsorption of sodium dodecylbenzenesulfonate into Mg–Al–CO3 layered double hydroxides. J. Phys. Chem. Solids 65, 487 (2004). https://doi.org/10.1016/j.jpcs.2003.09.020

    Article  CAS  Google Scholar 

  37. R. Elmoubarki, F.Z. Mahjoubi, A. Elhalil, H. Tounsadi, M. Abdennouri, M.H. Sadiq, S. Qourzal, A. Zouhri, N. Barka, Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal. J. Mater. Res. Technol. 6, 271 (2017). https://doi.org/10.1016/j.jmrt.2016.09.007

    Article  CAS  Google Scholar 

  38. J.T. Kloprogge, L. Hickey, R. Trujillano, M.J. Holgado, M.S. San Román, V. Rives, W.N. Martens, R.L. Frost, Characterization of intercalated Ni/Al hydrotalcites prepared by the partial decomposition of urea. Cryst. Growth Des. 6, 1533 (2006). https://doi.org/10.1021/cg0504612

    Article  CAS  Google Scholar 

  39. Y. Chen, F. Li, S. Zhou, J. Wei, Y. Dai, Y. Chen, Structure and photoluminescence of Mg–Al–Eu ternary hydrotalcite-like layered double hydroxides. J. Solid State Chem. 183, 2222 (2010). https://doi.org/10.1016/j.jssc.2010.07.042

    Article  CAS  Google Scholar 

  40. S. Mallakpour, M. Dinari, V. Behranvand, Ultrasonic-assisted synthesis and characterization of layered double hydroxides intercalated with bioactive N, N′-(pyromellitoyl)-bis-l-α-amino acids. RSC Adv. 3, 23303 (2013). https://doi.org/10.1039/C3RA43645D

    Article  CAS  Google Scholar 

  41. Y. Guo, Z. Zhu, Y. Qiu, J. Zhao, Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect. Chem. Eng. J. 219, 69 (2013). https://doi.org/10.1016/j.cej.2012.12.084

    Article  CAS  Google Scholar 

  42. K. El Hassani, B.H. Beakou, D. Kalnina, E. Oukani, A. Anouar, Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: a comparative study. Appl. Clay Sci. 140, 124 (2017). https://doi.org/10.1016/j.clay.2017.02.010

    Article  CAS  Google Scholar 

  43. H. Sadegh, G.A.M. Ali, S. Agarwal, V.K. Gupta, Surface Modification of MWCNTs with carboxylic-to-amine and their superb adsorption performance. Int. J. Environ. Res. 13, 523 (2019). https://doi.org/10.1007/s41742-019-00193-w

    Article  CAS  Google Scholar 

  44. H. Sadegh, G.A.M. Ali, A.S.H. Makhlouf, K.F. Chong, N.S. Alharbi, S. Agarwal, V.K. Gupta, MWCNTs-Fe3O4 nanocomposite for Hg(II) high adsorption efficiency. J. Mol. Liq. 258, 345 (2018). https://doi.org/10.1016/j.molliq.2018.03.012

    Article  CAS  Google Scholar 

  45. C.H. Giles, T.H. MacEwan, S.N. Nakhwa and D. Smith, 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 3973 (1960). https://doi.org/10.1039/jr9600003973

  46. I. Langmuir, The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38, 2221 (1916). https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  47. H. Freundlich, W. Heller, The Adsorption of cis- and trans-Azobenzene. J. Am. Chem. Soc. 61, 2228 (1939). https://doi.org/10.1021/ja01877a071

    Article  CAS  Google Scholar 

  48. W. Yao, S. Yu, J. Wang, Y. Zou, S. Lu, Y. Ai, N.S. Alharbi, A. Alsaedi, T. Hayat, X. Wang, Enhanced removal of methyl orange on calcined glycerol-modified nanocrystallined Mg/Al layered double hydroxides. Chem. Eng. J. 307, 476 (2017). https://doi.org/10.1016/j.cej.2016.08.117

    Article  CAS  Google Scholar 

  49. E.L. Crepaldi, J. Tronto, L.P. Cardoso, J.B. Valim, Sorption of terephthalate anions by calcined and uncalcined hydrotalcite-like compounds. Colloids Surf., A 211, 103 (2002). https://doi.org/10.1016/s0927-7757(02)00233-9

    Article  CAS  Google Scholar 

  50. H. Sadegh, G.A.M. Ali, V.K. Gupta, A.S.H. Makhlouf, R. Shahryari-ghoshekandi, M.N. Nadagouda, M. Sillanpää, E. Megiel, The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem. 7, 1 (2017). https://doi.org/10.1007/s40097-017-0219-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Z. Mahjoubi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-abboubi, M., Boutoial, K., Barka, N. et al. Structural and morphological investigations of nanolayered double hydroxides as effective adsorbents of methyl orange. emergent mater. 5, 155–165 (2022). https://doi.org/10.1007/s42247-022-00359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00359-x

Keywords

Navigation