Skip to main content
Log in

Biocompatibility enhancement of PLA by the generation of bionanocomposites with fish collagen derivatives

Emergent Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Cite this article

Abstract

Nanocomposites comprising bio-based polymers have become relevant in fields such as food packaging and biomedical applications. Polylactide (PLA) is a chiral and aliphatic polyester that can attain a wide range of tacticities which enables to tailor of the final material properties. However, PLA exhibits hydrophobic characteristics requiring the enhancement of its bioactivity by the generation of composites with hydrophilic materials as an approach to generate multifunctional material. Collagen is a natural and hydrophilic biopolymer that is partially hydrolyzed to obtain a material exhibiting higher solubility in aqueous solutions, namely gelatin, thus improving collagen usability. Herein, a series of free-standing films comprising different concentrations of commercial PLA and gelatin obtained from waste fisheries were produced to afford biocompatible coatings with promising biomedical applications. The multiscale structural characterization performed from the molecular scale (FTIR) to the nano-scale (SAXS/WAXS) level has been correlated with the thermal behaviour (DSC) and degradation (TGA) of the bionanocomposites generated to understand the processing conditions on the final material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Farah, D.G. Anderson, R. Langer, Adv. Drug Deliv. Rev. 107, 367 (2016)

    Article  CAS  Google Scholar 

  2. A. Gnanamani, T. Mitra, G. Sailakshmi, A. B. Mandal, N. Graupner, J. Müssig, Natural Polymers, Biopolymers,Biomaterials, and Their Composites, Blends and Ipns (2012)

  3. F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, J. Compos. Mater. 40, 1511 (2006)

    Article  CAS  Google Scholar 

  4. K.K. Yang, X.L. Wang, Y.Z. Wang, J. Ind. Eng. Chem. 13, 485 (2007)

    CAS  Google Scholar 

  5. S. Sinha Ray, M. Okamoto, Macromol. Rapid Commun. 24, 815 (2003)

    Article  Google Scholar 

  6. M. Naffakh, C. Marco, G. Ellis, Polymers (Basel). 7, 2175 (2015)

    Article  CAS  Google Scholar 

  7. M. Naffakh, A.M. Díez-Pascual, C. Marco, RSC Adv. 6, 40033 (2016)

    Article  CAS  Google Scholar 

  8. M. Brzeziński, T. Biela, Mater. Lett. 121, 244 (2014)

    Article  Google Scholar 

  9. E. Fortunati, I. Armentano, Q. Zhou, D. Puglia, A. Terenzi, L.A. Berglund, J.M. Kenny, Polym. Degrad. Stab. 97, 2027 (2012)

    Article  CAS  Google Scholar 

  10. M.J. Sobkowicz, J.L. Feaver, J.R. Dorgan, Clean - Soil. Air, Water 36, 706 (2008)

    Article  CAS  Google Scholar 

  11. R. F. Usha Kiran Sanivada, Gonzalo Mármol, F. P. Brito, Polymers (Basel) 1 (2020)

  12. B. Torabinejad, J. Mohammadi-Rovshandeh, S.M. Davachi, A. Zamanian, Mater. Sci. Eng. C 42, 199 (2014)

    Article  CAS  Google Scholar 

  13. M. Murariu, P. Dubois, Adv. Drug Deliv. Rev. 107, 17 (2016)

    Article  CAS  Google Scholar 

  14. Z. Brounstein, C.M. Yeager, A. Labouriau, Polymers (Basel). 13, 1 (2021)

    Google Scholar 

  15. P. Eltouby, I. Shyha, C. Li, J. Khaliq, Ceram. Int. (2021)

  16. Y. F. Xu, F. Nudelman, E. D. Eren, M. J. M. Wirix, B. Cantaert, W. H. Nijhuis, D. Hermida-Merino, G. Portale, P. H. H. Bomans, C. Ottmann, H. Friedrich, W. Bras, A. Akiva, J. P. R. O. Orgel, F. C. Meldrum, N. Sommerdijk, Nat. Commun. 11, (2020)

  17. M.S. Ghiasi, J. Chen, A. Vaziri, E.K. Rodriguez, A. Nazarian, Bone Rep. 6, 87 (2017)

    Article  Google Scholar 

  18. A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Biotechnol. Adv. 30, 321 (2012)

    Article  CAS  Google Scholar 

  19. K. Szustakiewicz, M. Włodarczyk, M. Gazińska, K. Rudnicka, P. Płociński, P. Szymczyk-ziółkowska, G. Ziółkowski, M. Biernat, K. Sieja, M. Grzymajło, P. Jóźwiak, S. Michlewska, A.W. Trochimczuk, Int. J. Mol. Sci. 22, 1 (2021)

    Google Scholar 

  20. M. Gazińska, A. Krokos, M. Kobielarz, M. Włodarczyk, P. Skibińska, B. Stępak, A. Antończak, M. Morawiak, P. Płociński, K. Rudnicka, Int. J. Mol. Sci. 21, 1 (2020)

    Article  Google Scholar 

  21. T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, Y. Lin, Bone Res. 3, (2015)

  22. D. Coppola, M. Oliviero, G. A. Vitale, C. Lauritano, I. D’Ambra, S. Iannace, D. de Pascale, Mar. Drugs 18, (2020)

  23. European Comission, The EU Blue Economy Report (2020)

  24. V. Ryabinin, J. Barbière, P. Haugan, G. Kullenberg, N. Smith, C. McLean, A. Troisi, A. S. Fischer, S. Aricò, T. Aarup, P. Pissierssens, M. Visbeck, H. Enevoldsen, J. Rigaud, Front. Mar. Sci. 6, (2019)

  25. L. C. Lv, Q. Y. Huang, W. Ding, X. H. Xiao, H. Y. Zhang, L. X. Xiong, J. Funct. Foods 63, (2019)

  26. F. Silver, R. Trelstad, Biopolymers 20, 359 (1981)

    Article  CAS  Google Scholar 

  27. D. A. Cuevas-Acuña, J. L. Arias-Moscoso, W. Torres-Arreola, F. Cadena-Cadena, R. G. Valdez-Melchor, S. Chaparro-Hernandez, H. del C. Santacruz-Ortega, S. Ruiz-Cruz, Appl. Sci. 10, (2020)

  28. Z. Yang, S. Chaieb, and Y. Hemar, Polym. Rev. 1 (2021)

  29. M. Foox, M. Zilberman, Expert Opin. Drug Deliv. 12, 1547 (2015)

    Article  Google Scholar 

  30. R. Yasmin, M. Shah, S.A. Khan, R. Ali, Nanotechnol. Rev. 6, 191 (2017)

    Article  CAS  Google Scholar 

  31. A.A. Leyva-Verduzco, M.M. Castillo-Ortega, L.H. Chan-Chan, E. Silva-Campa, R. Galaz-Méndez, R. Vera-Graziano, J.C. Encinas-Encinas, T. DelCastillo-Castro, D.E. Rodríguez-Félix, H. del C. Santacruz-Ortega, I. Santos-Sauceda, Polym. Bull. 77, 5985 (2020)

    Article  CAS  Google Scholar 

  32. P. Nooeaid, P. Chuysinuan, C. Pengsuk, D. Dechtrirat, K. Lirdprapamongkol, S. Techasakul, J. Svasti, J. Sci. Adv. Mater. Devices 5, 337 (2020)

    Article  Google Scholar 

  33. S.F. Hosseini, Z. Javidi, M. Rezaei, Int. J. Biol. Macromol. 92, 1205 (2016)

    Article  CAS  Google Scholar 

  34. K. Nilsuwan, S. Benjakul, T. Prodpran, Food Hydrocoll. 77, 248 (2018)

    Article  CAS  Google Scholar 

  35. S. Jin, F. Sun, Q. Zou, J. Huang, Y. Zuo, Y. Li, S. Wang, L. Cheng, Y. Man, F. Yang, J. Li, Biomacromol 20, 2058 (2019)

    Article  CAS  Google Scholar 

  36. S. C. Sousa, J. A. Vázquez, R. I. Pérez-Martín, A. P. Carvalho, A. M. Gomes, Molecules 22, (2017)

  37. J.H. Muyonga, C.G.B. Cole, K.G. Duodu, Food Chem. 86, 325 (2004)

    Article  CAS  Google Scholar 

  38. W.K. Surewicz, H.H. Mantsch, Biochem. Biophys. Res. Commun. 150, 245 (1988)

    Article  CAS  Google Scholar 

  39. S. Chuaychan, S. Benjakul, H. Kishimura, J. Food Process. Preserv. 41, 1 (2017)

    Article  Google Scholar 

  40. E. Ben Slimane, S. Sadok, Mar. Drugs 16, (2018)

  41. J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, J. Mol. Struct. 735–736, 249 (2005)

    Article  Google Scholar 

  42. N. C. for B. Information, (2021).

  43. I.M. Kalogeras, Encycl. Polym. Blends 3, 1 (2016)

    CAS  Google Scholar 

  44. M.L. Di Lorenzo, R. Androsch, Polym. Int. 68, 320 (2019)

    Article  Google Scholar 

  45. F. Badii, W. MacNaughtan, J.R. Mitchell, I.A. Farhat, Dry. Technol. 32, 30 (2014)

    Article  CAS  Google Scholar 

  46. A. Terzi, N. Gallo, S. Bettini, T. Sibillano, D. Altamura, L. Campa, M.L. Natali, L. Salvatore, M. Madaghiele, L. De Caro, L. Valli, A. Sannino, C. Giannini, Front. Bioeng. Biotechnol. 7, 1 (2019)

    Article  Google Scholar 

  47. T.Y. Cho, G. Strobl, Polymer (Guildf). 47, 1036 (2006)

    Article  CAS  Google Scholar 

  48. P. Pan, L. Han, G. Shan, Y. Bao, Macromolecules 47, 8126 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CACTI (University of Vigo) for technical assistance, Luis Lugo for providing access to the differential scanning calorimetry (DSC) equipment, and the ALBA synchrotron radiation facility for the beamtime conceded at BL11.

Funding

The authors acknowledge the financial support received from Project KET4F-Gas-SOE2/P1/P0823, which is co-financed by the European Regional Development Fund within the framework of Interreg Sudoe Programme and project PID2019-105827RB-I00–Agencia Estatal de Investigación, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Hermida-Merino or D. Hermida-Merino.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 336 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya-Lopez, C., Valcarcel, J., Vázquez, J.A. et al. Biocompatibility enhancement of PLA by the generation of bionanocomposites with fish collagen derivatives. emergent mater. 5, 695–702 (2022). https://doi.org/10.1007/s42247-021-00340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00340-0

Keywords

Navigation