Abstract
Nanocomposites comprising bio-based polymers have become relevant in fields such as food packaging and biomedical applications. Polylactide (PLA) is a chiral and aliphatic polyester that can attain a wide range of tacticities which enables to tailor of the final material properties. However, PLA exhibits hydrophobic characteristics requiring the enhancement of its bioactivity by the generation of composites with hydrophilic materials as an approach to generate multifunctional material. Collagen is a natural and hydrophilic biopolymer that is partially hydrolyzed to obtain a material exhibiting higher solubility in aqueous solutions, namely gelatin, thus improving collagen usability. Herein, a series of free-standing films comprising different concentrations of commercial PLA and gelatin obtained from waste fisheries were produced to afford biocompatible coatings with promising biomedical applications. The multiscale structural characterization performed from the molecular scale (FTIR) to the nano-scale (SAXS/WAXS) level has been correlated with the thermal behaviour (DSC) and degradation (TGA) of the bionanocomposites generated to understand the processing conditions on the final material.
This is a preview of subscription content,
to check access.



Similar content being viewed by others
References
S. Farah, D.G. Anderson, R. Langer, Adv. Drug Deliv. Rev. 107, 367 (2016)
A. Gnanamani, T. Mitra, G. Sailakshmi, A. B. Mandal, N. Graupner, J. Müssig, Natural Polymers, Biopolymers,Biomaterials, and Their Composites, Blends and Ipns (2012)
F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, J. Compos. Mater. 40, 1511 (2006)
K.K. Yang, X.L. Wang, Y.Z. Wang, J. Ind. Eng. Chem. 13, 485 (2007)
S. Sinha Ray, M. Okamoto, Macromol. Rapid Commun. 24, 815 (2003)
M. Naffakh, C. Marco, G. Ellis, Polymers (Basel). 7, 2175 (2015)
M. Naffakh, A.M. Díez-Pascual, C. Marco, RSC Adv. 6, 40033 (2016)
M. Brzeziński, T. Biela, Mater. Lett. 121, 244 (2014)
E. Fortunati, I. Armentano, Q. Zhou, D. Puglia, A. Terenzi, L.A. Berglund, J.M. Kenny, Polym. Degrad. Stab. 97, 2027 (2012)
M.J. Sobkowicz, J.L. Feaver, J.R. Dorgan, Clean - Soil. Air, Water 36, 706 (2008)
R. F. Usha Kiran Sanivada, Gonzalo Mármol, F. P. Brito, Polymers (Basel) 1 (2020)
B. Torabinejad, J. Mohammadi-Rovshandeh, S.M. Davachi, A. Zamanian, Mater. Sci. Eng. C 42, 199 (2014)
M. Murariu, P. Dubois, Adv. Drug Deliv. Rev. 107, 17 (2016)
Z. Brounstein, C.M. Yeager, A. Labouriau, Polymers (Basel). 13, 1 (2021)
P. Eltouby, I. Shyha, C. Li, J. Khaliq, Ceram. Int. (2021)
Y. F. Xu, F. Nudelman, E. D. Eren, M. J. M. Wirix, B. Cantaert, W. H. Nijhuis, D. Hermida-Merino, G. Portale, P. H. H. Bomans, C. Ottmann, H. Friedrich, W. Bras, A. Akiva, J. P. R. O. Orgel, F. C. Meldrum, N. Sommerdijk, Nat. Commun. 11, (2020)
M.S. Ghiasi, J. Chen, A. Vaziri, E.K. Rodriguez, A. Nazarian, Bone Rep. 6, 87 (2017)
A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Biotechnol. Adv. 30, 321 (2012)
K. Szustakiewicz, M. Włodarczyk, M. Gazińska, K. Rudnicka, P. Płociński, P. Szymczyk-ziółkowska, G. Ziółkowski, M. Biernat, K. Sieja, M. Grzymajło, P. Jóźwiak, S. Michlewska, A.W. Trochimczuk, Int. J. Mol. Sci. 22, 1 (2021)
M. Gazińska, A. Krokos, M. Kobielarz, M. Włodarczyk, P. Skibińska, B. Stępak, A. Antończak, M. Morawiak, P. Płociński, K. Rudnicka, Int. J. Mol. Sci. 21, 1 (2020)
T. Gong, J. Xie, J. Liao, T. Zhang, S. Lin, Y. Lin, Bone Res. 3, (2015)
D. Coppola, M. Oliviero, G. A. Vitale, C. Lauritano, I. D’Ambra, S. Iannace, D. de Pascale, Mar. Drugs 18, (2020)
European Comission, The EU Blue Economy Report (2020)
V. Ryabinin, J. Barbière, P. Haugan, G. Kullenberg, N. Smith, C. McLean, A. Troisi, A. S. Fischer, S. Aricò, T. Aarup, P. Pissierssens, M. Visbeck, H. Enevoldsen, J. Rigaud, Front. Mar. Sci. 6, (2019)
L. C. Lv, Q. Y. Huang, W. Ding, X. H. Xiao, H. Y. Zhang, L. X. Xiong, J. Funct. Foods 63, (2019)
F. Silver, R. Trelstad, Biopolymers 20, 359 (1981)
D. A. Cuevas-Acuña, J. L. Arias-Moscoso, W. Torres-Arreola, F. Cadena-Cadena, R. G. Valdez-Melchor, S. Chaparro-Hernandez, H. del C. Santacruz-Ortega, S. Ruiz-Cruz, Appl. Sci. 10, (2020)
Z. Yang, S. Chaieb, and Y. Hemar, Polym. Rev. 1 (2021)
M. Foox, M. Zilberman, Expert Opin. Drug Deliv. 12, 1547 (2015)
R. Yasmin, M. Shah, S.A. Khan, R. Ali, Nanotechnol. Rev. 6, 191 (2017)
A.A. Leyva-Verduzco, M.M. Castillo-Ortega, L.H. Chan-Chan, E. Silva-Campa, R. Galaz-Méndez, R. Vera-Graziano, J.C. Encinas-Encinas, T. DelCastillo-Castro, D.E. Rodríguez-Félix, H. del C. Santacruz-Ortega, I. Santos-Sauceda, Polym. Bull. 77, 5985 (2020)
P. Nooeaid, P. Chuysinuan, C. Pengsuk, D. Dechtrirat, K. Lirdprapamongkol, S. Techasakul, J. Svasti, J. Sci. Adv. Mater. Devices 5, 337 (2020)
S.F. Hosseini, Z. Javidi, M. Rezaei, Int. J. Biol. Macromol. 92, 1205 (2016)
K. Nilsuwan, S. Benjakul, T. Prodpran, Food Hydrocoll. 77, 248 (2018)
S. Jin, F. Sun, Q. Zou, J. Huang, Y. Zuo, Y. Li, S. Wang, L. Cheng, Y. Man, F. Yang, J. Li, Biomacromol 20, 2058 (2019)
S. C. Sousa, J. A. Vázquez, R. I. Pérez-Martín, A. P. Carvalho, A. M. Gomes, Molecules 22, (2017)
J.H. Muyonga, C.G.B. Cole, K.G. Duodu, Food Chem. 86, 325 (2004)
W.K. Surewicz, H.H. Mantsch, Biochem. Biophys. Res. Commun. 150, 245 (1988)
S. Chuaychan, S. Benjakul, H. Kishimura, J. Food Process. Preserv. 41, 1 (2017)
E. Ben Slimane, S. Sadok, Mar. Drugs 16, (2018)
J. Zhang, H. Sato, H. Tsuji, I. Noda, Y. Ozaki, J. Mol. Struct. 735–736, 249 (2005)
N. C. for B. Information, (2021).
I.M. Kalogeras, Encycl. Polym. Blends 3, 1 (2016)
M.L. Di Lorenzo, R. Androsch, Polym. Int. 68, 320 (2019)
F. Badii, W. MacNaughtan, J.R. Mitchell, I.A. Farhat, Dry. Technol. 32, 30 (2014)
A. Terzi, N. Gallo, S. Bettini, T. Sibillano, D. Altamura, L. Campa, M.L. Natali, L. Salvatore, M. Madaghiele, L. De Caro, L. Valli, A. Sannino, C. Giannini, Front. Bioeng. Biotechnol. 7, 1 (2019)
T.Y. Cho, G. Strobl, Polymer (Guildf). 47, 1036 (2006)
P. Pan, L. Han, G. Shan, Y. Bao, Macromolecules 47, 8126 (2014)
Acknowledgements
The authors thank CACTI (University of Vigo) for technical assistance, Luis Lugo for providing access to the differential scanning calorimetry (DSC) equipment, and the ALBA synchrotron radiation facility for the beamtime conceded at BL11.
Funding
The authors acknowledge the financial support received from Project KET4F-Gas-SOE2/P1/P0823, which is co-financed by the European Regional Development Fund within the framework of Interreg Sudoe Programme and project PID2019-105827RB-I00–Agencia Estatal de Investigación, Spain.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Moya-Lopez, C., Valcarcel, J., Vázquez, J.A. et al. Biocompatibility enhancement of PLA by the generation of bionanocomposites with fish collagen derivatives. emergent mater. 5, 695–702 (2022). https://doi.org/10.1007/s42247-021-00340-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42247-021-00340-0