Skip to main content

Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide

Abstract

Cobalt ferrite nanoparticles were obtained by the green synthesis method using extracts of grape peel and grape pulp. The obtained samples have been investigated by means of X-ray diffraction (XRD) analysis, scanning electron microscope (SEM), and Mossbauer spectroscopy. All samples contain pure CoFe2O4 with the cubic spinel structure of the space group Fd3m. XRD analysis indicates that cobalt ferrite nanoparticles synthesized using grape peel extract and grape pulp extract have crystallite sizes of ~ 5 and ~ 25 nm, respectively. Cation distribution and crystalline structure parameters of the samples were calculated on the basis of Mossbauer spectroscopy data. After annealing, the CoFe2O4 sample obtained with grape pulp extract has a higher degree of inversion than that obtained with grape peel extract. The decrease in the degree of inversion is related to a decrease in the average size of crystallites. The CoFe2O4 sample synthesized using grape peel extract is a more active catalyst for the decomposition of hydrogen peroxide. The first-order rate constants are 1.11·10−4 s−1 and 3.43·10−4 s−1 for the CoFe2O4-pulp and CoFe2O4-peel samples, respectively. A 100 mM H2O2 solution was decomposed to 97.4%. The surface morphology of the cobalt ferrites remains unchanged after the catalytic decomposition of H2O2. The synthesized cobalt ferrites can be used in Fenton processes as stable magnetic catalysts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016). https://doi.org/10.1016/J.CCR.2016.01.012

    CAS  Article  Google Scholar 

  2. O. Kelebogile, N. Masunga, A. Kuvarega, T. Ti, B.B. Mamba, K.K. Kefeni, Materials Science in semiconductor processing cobalt ferrite nanoparticles and nanocomposites : photocatalytic , antimicrobial activity and toxicity in water treatment, Mater. Sci. Semicond. Process. 105523 (2020). https://doi.org/10.1016/j.mssp.2020.105523

  3. T. Tatarchuk, M. Myslin, I. Lapchuk, O. Olkhovyy, N. Danyliuk, V. Mandzyuk, Physics and chemistry of solid state synthesis, structure and morphology of magnesium ferrite nanoparticles, synthesized via “ green ” method. Phys. Chem. Solid St. 2, 195–203 (2021). https://doi.org/10.15330/pcss.22.2.195-203

    CAS  Article  Google Scholar 

  4. K.K. Kefeni, T.A.M. Msagati, T.T. Nkambule, B.B. Mamba, Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater. Sci. Eng. C. 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314

    CAS  Article  Google Scholar 

  5. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng. C. 33, 1–8 (2013). https://doi.org/10.1016/j.msec.2012.09.003

    CAS  Article  Google Scholar 

  6. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles. J. Alloys Compd. 731, 1256–1266 (2018). https://doi.org/10.1016/j.jallcom.2017.10.103

    CAS  Article  Google Scholar 

  7. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014). https://doi.org/10.1016/j.jmmm.2014.06.059

    CAS  Article  Google Scholar 

  8. M.M. El-Masry, R. Ramadan, M.K. Ahmed, The effect of adding cobalt ferrite nanoparticles on the mechanical properties of epoxy resin. Results Mater. 8, 100160 (2020). https://doi.org/10.1016/j.rinma.2020.100160

    Article  Google Scholar 

  9. T. Tatarchuk, A. Shyichuk, I. Trawczyńska, I. Yaremiy, A.T. Pędziwiatr, P. Kurzydło, B.F. Bogacz, R. Gargula, Spinel cobalt(II) ferrite-chromites as catalysts for H2O2 decomposition: synthesis, morphology, cation distribution and antistructure model of active centers formation. Ceram. Int. 46, 27517–27530 (2020). https://doi.org/10.1016/j.ceramint.2020.07.243

    CAS  Article  Google Scholar 

  10. M. Nasrollahzadeh, M.M. Sajadi, F. Babaei, M. Maham, Euphorbia helioscopia Linn as a green source for synthesis of silver nanoparticles and their optical and catalytic properties. J. Colloid Interface Sci. 450, 374–380 (2015). https://doi.org/10.1016/j.jcis.2015.03.033

    CAS  Article  Google Scholar 

  11. S. Gandhi, S. Issar, A.K. Mahapatro, I. Roy, Cobalt ferrite nanoparticles for bimodal hyperthermia and their mechanistic interactions with lysozyme. J. Mol. Liq. 310, 113194 (2020). https://doi.org/10.1016/j.molliq.2020.113194

    CAS  Article  Google Scholar 

  12. A. Das, D. De, A. Ghosh, M.M. Goswami, DNA engineered magnetically tuned cobalt ferrite for hyperthermia application. J. Magn. Magn. Mater. 475, 787–793 (2019). https://doi.org/10.1016/j.jmmm.2018.11.092

    CAS  Article  Google Scholar 

  13. Z. Shi, Y. Zeng, X. Chen, F. Zhou, L. Zheng, G. Wang, J. Gao, Y. Ma, L. Zheng, B. Fu, R. Yu, Mesoporous superparamagnetic cobalt ferrite nanoclusters: synthesis, characterization and application in drug delivery. J. Magn. Magn. Mater. 498, 166222 (2020). https://doi.org/10.1016/j.jmmm.2019.166222

    CAS  Article  Google Scholar 

  14. M. Ghanbari, F. Davar, A.E. Shalan, Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery. Ceram. Int. 47, 9409–9417 (2021). https://doi.org/10.1016/j.ceramint.2020.12.073

    CAS  Article  Google Scholar 

  15. S. Ramanavičius, R. Žalnėravičius, G. Niaura, A. Drabavičius, A. Jagminas, Shell-dependent antimicrobial efficiency of cobalt ferrite nanoparticles. Nano-Structures and Nano-Objects. 15, 40–47 (2018). https://doi.org/10.1016/j.nanoso.2018.03.007

    CAS  Article  Google Scholar 

  16. M. Nasrollahzadeh, M. Sajjadi, J. Dadashi, H. Ghafuri, Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci. 276, 102103 (2020). https://doi.org/10.1016/j.cis.2020.102103

    CAS  Article  Google Scholar 

  17. T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, A. Shyichuk, M. Myslin, V. Boychuk, Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core. J. Mol. Liq. 297, 111757 (2020). https://doi.org/10.1016/j.molliq.2019.111757

    CAS  Article  Google Scholar 

  18. İH. Karakas, The effects of fuel type onto the structural, morphological, magnetic and photocatalytic properties of nanoparticles in the synthesis of cobalt ferrite nanoparticles with microwave assisted combustion method. Ceram. Int. 47, 5597–5609 (2021). https://doi.org/10.1016/j.ceramint.2020.10.144

    CAS  Article  Google Scholar 

  19. S. Nasrin, F.U.Z. Chowdhury, S.M. Hoque, Study of hyperthermia temperature of manganese-substituted cobalt nano ferrites prepared by chemical co-precipitation method for biomedical application. J. Magn. Magn. Mater. 479, 126–134 (2019). https://doi.org/10.1016/j.jmmm.2019.02.010

    CAS  Article  Google Scholar 

  20. L.E. Caldeira, W.C. Guaglianoni, J. Venturini, S. Arcaro, C.P. Bergmann, S.R. Bragança, Sintering-dependent mechanical and magnetic properties of spinel cobalt ferrite (CoFe2O4) ceramics prepared via sol-gel synthesis. Ceram. Int. 46, 2465–2472 (2020). https://doi.org/10.1016/j.ceramint.2019.09.240

    CAS  Article  Google Scholar 

  21. S. Bindra Narang, K. Pubby, Nickel spinel ferrites: a review. J. Magn. Magn. Mater. 167163 (2020). https://doi.org/10.1016/j.jmmm.2020.167163

  22. S. Moosavi, S. Zakaria, C.H. Chia, S. Gan, N.A. Azahari, H. Kaco, Hydrothermal synthesis, magnetic properties and characterization of CoFe2O4 nanocrystals. Ceram. Int. 43, 7889–7894 (2017). https://doi.org/10.1016/j.ceramint.2017.03.110

    CAS  Article  Google Scholar 

  23. L. Gan, S. Shang, C.W.M. Yuen, S.X. Jiang, E. Hu, Hydrothermal synthesis of magnetic CoFe 2 O 4 /graphene nanocomposites with improved photocatalytic activity. Appl. Surf. Sci. 351, 140–147 (2015). https://doi.org/10.1016/j.apsusc.2015.05.130

    CAS  Article  Google Scholar 

  24. S.M. Sajadi, D.H. Kadir, S.M. Balaky, E.M. Perot, An Eco-friendly nanocatalyst for removal of some poisonous environmental pollutions and statistically evaluation of its performance. Surf. Interfaces 23, 100908 (2021). https://doi.org/10.1016/j.surfin.2020.100908

    CAS  Article  Google Scholar 

  25. A. Rostami-Vartooni, L. Rostami, M. Bagherzadeh, Green synthesis of Fe3O4/bentonite-supported Ag and Pd nanoparticles and investigation of their catalytic activities for the reduction of azo dyes. J. Mater. Sci. Mater. Electron. 30, 21377–21387 (2019). https://doi.org/10.1007/s10854-019-02514-3

    CAS  Article  Google Scholar 

  26. M. Nasrollahzadeh, S.M. Sajadi, E. Honarmand, M. Maham, Preparation of palladium nanoparticles using Euphorbia thymifolia L. leaf extract and evaluation of catalytic activity in the ligand-free Stille and Hiyama cross-coupling reactions in water. New J. Chem. 39, 4745–4752 (2015). https://doi.org/10.1039/c5nj00244c

    CAS  Article  Google Scholar 

  27. M. Nasrollahzadeh, S.M. Sajadi, A. Rostami-vartooni, RSC Advances journey on greener pathways : use of Euphorbia condylocarpa M. bieb as reductant and stabilizer for green synthesis of Au / Pd bimetallic nanoparticles as reusable catalysts in the Suzuki and Heck coupling reactions in water. RSC Adv. 4, 43477–43484 (2014). https://doi.org/10.1039/C4RA07173E

    CAS  Article  Google Scholar 

  28. M. Nasrollahzadeh, S. Mahmoudi-GomYek, N. Motahharifar, M. GhaforiGorab, Recent developments in the plant-mediated green synthesis of Ag-based nanoparticles for environmental and catalytic applications. Chem. Rec. 19, 2436–2479 (2019). https://doi.org/10.1002/tcr.201800202

    CAS  Article  Google Scholar 

  29. M. Nasrollahzadeh, S.M. Sajadi, Journal of colloid and interface science green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract : catalytic activity for cyanation of aryl iodides under ligand-free conditions. J. Colloid Interface Sci. 469, 191–195 (2016). https://doi.org/10.1016/j.jcis.2016.02.024

    CAS  Article  Google Scholar 

  30. M. Nasrollahzadeh, S. Mohammad Sajadi, Pd nanoparticles synthesized in situ with the use of Euphorbia granulate leaf extract: catalytic properties of the resulting particles. J. Colloid Interface Sci. 462, 243–251 (2016). https://doi.org/10.1016/j.jcis.2015.09.065

    CAS  Article  Google Scholar 

  31. P. Mondal, A. Anweshan, M.K. Purkait, Green synthesis and environmental application of iron-based nanomaterials and nanocomposite: a review. Chemosphere 259, 127509 (2020). https://doi.org/10.1016/j.chemosphere.2020.127509

    CAS  Article  Google Scholar 

  32. D. Gingasu, I. Mindru, O.C. Mocioiu, S. Preda, N. Stanica, L. Patron, A. Ianculescu, O. Oprea, S. Nita, I. Paraschiv, M. Popa, C. Saviuc, C. Bleotu, M.C. Chifiriuc, Synthesis of nanocrystalline cobalt ferrite through soft chemistry methods: a green chemistry approach using sesame seed extract. Mater. Chem. Phys. 182, 219–230 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.026

    CAS  Article  Google Scholar 

  33. A. Manikandan, R. Sridhar, S. Arul Antony, S. Ramakrishna, A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4nanostructures. J. Mol. Struct. 1076, 188–200 (2014). https://doi.org/10.1016/j.molstruc.2014.07.054

    CAS  Article  Google Scholar 

  34. T. Tatarchuk, M. Liaskovska, V. Kotsyubynsky, M. Bououdina, Green synthesis of cobalt ferrite nanoparticles using Cydonia oblonga extract: structural and mössbauer studies. Mol. Cryst. Liq. Cryst. 672, 54–66 (2018). https://doi.org/10.1080/15421406.2018.1542107

    CAS  Article  Google Scholar 

  35. E.P. Muniz, L.S.D. de Assunção, L.M. de Souza, J.J.K. Ribeiro, W.P. Marques, R.D. Pereira, P.S.S. Porto, J.R.C. Proveti, E.C. Passamani, On cobalt ferrite production by sol-gel from orange fruit residue by three related procedures and its application in oil removal. J. Clean. Prod. 265, 121712 (2020). https://doi.org/10.1016/j.jclepro.2020.121712

    CAS  Article  Google Scholar 

  36. R. Yuvasravana, P.P. George, N. Devanna, Synthesis and characterization of spinel metal aluminate by a simple microwave assisted green synthesis. Mater. Today Proc. 4, 10664–10671 (2017). https://doi.org/10.1016/j.matpr.2017.08.012

    Article  Google Scholar 

  37. P. Mahajan, A. Sharma, B. Kaur, N. Goyal, S. Gautam, Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum 161, 389–397 (2019). https://doi.org/10.1016/j.vacuum.2018.12.021

    CAS  Article  Google Scholar 

  38. A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, M. Mahdavi, Green synthesis of Ag/Fe 3 O 4 /ZrO 2 nanocomposite using aqueous Centaurea cyanus flower extract and its catalytic application for reduction of organic pollutants, Iran. J. Catal. 9, 27–35 (2019)

    CAS  Google Scholar 

  39. R. Yuvakkumar, S.I. Hong, Green synthesis of spinel magnetite iron oxide nanoparticles. Adv. Mater. Res. 1051, 39–42 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1051.39

    CAS  Article  Google Scholar 

  40. A. Manikandan, M. Durka, M. AmuthaSelvi, S. Arul Antony, Aloe vera plant extracted green synthesis, structural and opto-magnetic characterizations of spinel CoxZn1-xAl2O4 nano-catalysts. J. Nanosci. Nanotechnol. 16, 357–373 (2016). https://doi.org/10.1166/jnn.2016.10621

    CAS  Article  Google Scholar 

  41. K. Pan, C. Yang, J. Hu, W. Yang, B. Liu, J. Yang, S. Liang, K. Xiao, H. Hou, Oxygen vacancy mediated surface charge redistribution of Cu-substituted LaFeO3 for degradation of bisphenol A by efficient decomposition of H2O2. J. Hazard. Mater. 389, 122072 (2020). https://doi.org/10.1016/j.jhazmat.2020.122072

    CAS  Article  Google Scholar 

  42. Z. Cao, C. Zuo, Direct synthesis of magnetic cofe2o4nanoparticles as recyclable photo-fenton catalysts for removing organic dyes. ACS Omega 5, 22614–22620 (2020). https://doi.org/10.1021/acsomega.0c03404

    CAS  Article  Google Scholar 

  43. A. Hassani, G. Çelikdağ, P. Eghbali, M. Sevim, S. Karaca, Ö. Metin, Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason. Sonochem. 40, 841–852 (2018). https://doi.org/10.1016/j.ultsonch.2017.08.026

    CAS  Article  Google Scholar 

  44. J. Weiss, The free radical mechanism in the reactions of hydrogen peroxide. Adv. Catal. 4, 343–365 (1952). https://doi.org/10.1016/S0360-0564(08)60618-5

    CAS  Article  Google Scholar 

  45. Z. Liu, Q. Shen, C. Zhou, L. Fang, M. Yang, T. Xia, Kinetic and mechanistic study on catalytic decomposition of hydrogen peroxide on carbon-nanodots/graphitic carbon nitride composite. Catalysts 8, 445 (2018). https://doi.org/10.3390/catal8100445

    CAS  Article  Google Scholar 

  46. R. Curci, J.O. Edwards, Activation of hydrogen peroxide by organic compounds. 45–95 (1992). https://doi.org/10.1007/978-94-017-0984-2_3

  47. G. Min Cao, M. Sheng, W. Feng Niu, Y. Lei Fei, D. Li, Regeneration and reuse of iron catalyst for Fenton-like reactions. J. Hazard. Mater. 172, 1446–1449 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.010

    CAS  Article  Google Scholar 

  48. M. Xu, C. Wu, Y. Zhou, Advancements in the Fenton process for wastewater treatment. Adv. Oxid. Process. - Appl. Trends, Prospect. (2020). https://doi.org/10.5772/intechopen.90256

  49. M. Hui Zhang, H. Dong, L. Zhao, D. Xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 670, 110–121 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.180

    CAS  Article  Google Scholar 

  50. E.E. Ebrahiem, M.N. Al-Maghrabi, A.R. Mobarki, Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology. Arab. J. Chem. 10, S1674–S1679 (2017). https://doi.org/10.1016/j.arabjc.2013.06.012

    CAS  Article  Google Scholar 

  51. H. Nikmanesh, M. Eshraghi, S. Karimi, Cation distribution, magnetic and structural properties of CoCrxFe2-xO4: effect of calcination temperature and chromium substitution. (2019). https://doi.org/10.1016/j.jmmm.2018.09.102

  52. L. ErshadiAfshar, N. Chaibakhsh, Z. Moradi-Shoeili, Treatment of wastewater containing cytotoxic drugs by CoFe2O4 nanoparticles in Fenton/ozone oxidation process. Sep. Sci. Technol. 53, 2671–2682 (2018). https://doi.org/10.1080/01496395.2018.1461113

    CAS  Article  Google Scholar 

  53. A. Khorsand Zak, W.H. Abd, M.E. Majid, R. Yousefi. Abrishami, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/J.SOLIDSTATESCIENCES.2010.11.024

    CAS  Article  Google Scholar 

  54. F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis, Structural and magnetic properties of spinel ferrite nanoparticles. J. Nanosci. Nanotechnol. 19, 4888–4902 (2019). https://doi.org/10.1166/jnn.2019.16877

    CAS  Article  Google Scholar 

  55. Y. Melikhov, J.E. Snyder, D.C. Jiles, A.P. Ring, J.A. Paulsen, C.C.H. Lo, K.W. Dennis, Temperature dependence of magnetic anisotropy in Mn-substituted cobalt ferrite. J. Appl. Phys. 99 (2006).https://doi.org/10.1063/1.2151793

  56. A.C. Lima, M.A. Morales, J.H. Araújo, J.M. Soares, D.M.A. Melo, A.S. Carriço, Evaluation of (BH)max and magnetic anisotropy of cobalt ferrite nanoparticles synthesized in gelatin. Ceram. Int. 41, 11804–11809 (2015). https://doi.org/10.1016/j.ceramint.2015.05.148

    CAS  Article  Google Scholar 

  57. A. Omelyanchik, M. Salvador, F. D’orazio, V. Mameli, C. Cannas, D. Fiorani, A. Musinu, M. Rivas, V. Rodionova, G. Varvaro, D. Peddis, Magnetocrystalline and surface anisotropy in CoFe2O4 nanoparticles. Nanomaterials 10, 1–11 (2020). https://doi.org/10.3390/nano10071288

    CAS  Article  Google Scholar 

  58. A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, Characterizing the magnetic anisotropy constant of spinel cobalt ferrite nanoparticles. Appl. Phys. Lett. 76, 3624–3626 (2000). https://doi.org/10.1063/1.126727

    CAS  Article  Google Scholar 

  59. A.L. Tiano, G.C. Papaefthymiou, C.S. Lewis, J. Han, C. Zhang, Q. Li, C. Shi, A.M.M. Abeykoon, S.J.L. Billinge, E. Stach, J. Thomas, K. Guerrero, P. Munayco, J. Munayco, R.B. Scorzelli, P. Burnham, A.J. Viescas, S.S. Wong, Correlating size and composition-dependent effects with magnetic, Mössbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem. Mater. 27, 3572–3592 (2015). https://doi.org/10.1021/acs.chemmater.5b00767

    CAS  Article  Google Scholar 

  60. K.N. Trohidou, Magnetic nanoparticle assemblies. Magn. Nanoparticle Assem.  1–293 (2014).https://doi.org/10.4032/9789814411974

  61. K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, K. Vasundhara, S.N. Achary, S.K. Deshpande, P.D. Babu, S.S. Meena, Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method Size dependent magnetic and dielectric properties of nano CoFe2O4 prepared by a salt assisted gel-combustion method. J. Appl. Phys. 113, 194101 (2013). https://doi.org/10.1063/1.4804946

    CAS  Article  Google Scholar 

  62. S.M. Patange, S. Desai, S.S. Meena, S.M. Yusuf, S.E. Shirsath, Random site occupancy induced disordered Néel-type collinear spin alignment in heterovalent Zn2+–Ti4+ ion substituted CoFe2O4. RSC Adv. 5, 91482–91492 (2015). https://doi.org/10.1039/C5RA21522F

    CAS  Article  Google Scholar 

  63. S.R. Naik, A.V. Salker, S.M. Yusuf, S.S. Meena, Influence of Co 2+ distribution and spin – orbit coupling on the resultant magnetic properties of spinel cobalt ferrite nanocrystals. J. Alloys Compd. 566, 54–61 (2013). https://doi.org/10.1016/j.jallcom.2013.02.163

    CAS  Article  Google Scholar 

  64. T. Tatarchuk, A. Shyichuk, Z. Sojka, J. Gryboś, M. Naushad, V. Kotsyubynsky, M. Kowalska, S. Kwiatkowska-Marks, N. Danyliuk, Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb(II) adsorption and magnetic hyperthermia applications. J. Mol. Liq. 328 (2021). https://doi.org/10.1016/j.molliq.2021.115375

  65. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish, Recoilless-Fraction Ratios for Fe57 in Octahedral and tetrahedral sites of a spinel and a garnet. Phys. Rev. 183, 383–386 (1969). https://doi.org/10.1103/PhysRev.183.383

    CAS  Article  Google Scholar 

  66. M. Mozaffari, M.E. Arani, J. Amighian, The effect of cation distribution on magnetization of ZnFe2O4 nanoparticles. J. Magn. Magn. Mater. 322, 3240–3244 (2010). https://doi.org/10.1016/j.jmmm.2010.05.053

    CAS  Article  Google Scholar 

  67. K.A. Mohammed, A.D. Al-Rawas, A.M. Gismelseed, A. Sellai, H.M. Widatallah, A. Yousif, M.E. Elzain, M. Shongwe, Infrared and structural studies of Mg 1-xZn xFe 2O 4 ferrites. Phys. B Condens. Matter. 407, 795–804 (2012). https://doi.org/10.1016/j.physb.2011.12.097

    CAS  Article  Google Scholar 

  68. H. Luo, Y. Cheng, Y. Zeng, K. Luo, X. Pan, Enhanced decomposition of H2O2 by molybdenum disulfide in a Fenton-like process for abatement of organic micropollutants. Sci. Total Environ. 732, 139335 (2020). https://doi.org/10.1016/j.scitotenv.2020.139335

    CAS  Article  Google Scholar 

  69. J.H. Lee, H. Cho, S.O. Park, J.M. Hwang, Y. Hong, P. Sharma, W.C. Jeon, Y. Cho, C. Yang, S.K. Kwak, H.R. Moon, J.W. Jang, High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl. Catal. B Environ. 284, 119690 (2021). https://doi.org/10.1016/j.apcatb.2020.119690

    CAS  Article  Google Scholar 

  70. N.T.T. Loan, N.T.H. Lan, N.T. Thuy Hang, N.Q. Hai, D.T.T. Anh, V.T. Hau, L. Van Tan, T. Van Tran, CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-fenton properties. Processes. 7, 1–14 (2019). https://doi.org/10.3390/PR7120885

    Article  Google Scholar 

  71. Y. Yao, G. Wu, F. Lu, S. Wang, Y. Hu, J. Zhang, W. Huang, F. Wei, Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 heterostructures under natural indoor light. Environ. Sci. Pollut. Res. 23, 21833–21845 (2016). https://doi.org/10.1007/s11356-016-7329-2

    CAS  Article  Google Scholar 

  72. H.Y. He, J. Lu, Highly photocatalytic activities of magnetically separable reduced graphene oxide-CoFe2O4 hybrid nanostructures in dye photodegradation. Sep. Purif. Technol. 172, 374–381 (2017). https://doi.org/10.1016/j.seppur.2016.08.040

    CAS  Article  Google Scholar 

  73. X. Guo, H. Li, S. Zhao, Fast degradation of Acid Orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst. J. Taiwan Inst. Chem. Eng. 55, 90–100 (2015). https://doi.org/10.1016/j.jtice.2015.03.039

    CAS  Article  Google Scholar 

  74. Y. Deng, X. Zhao, J. Luo, Z. Wang, J. Tang, Magnetic recyclable CoFe2O4@PPy prepared by: in situ Fenton oxidization polymerization with advanced photo-Fenton performance. RSC Adv. 10, 1858–1869 (2020). https://doi.org/10.1039/c9ra09191b

    CAS  Article  Google Scholar 

  75. C.M. Lousada, M. Yang, K. Nilsson, M. Jonsson, Journal of molecular catalysis a : chemical catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides. J. Mol. Catal. A Chem. 379, 178–184 (2013). https://doi.org/10.1016/j.molcata.2013.08.017

    CAS  Article  Google Scholar 

  76. M. Jonsson, Kinetics, mechanism, and activation energy of H2O2 decomposition on the Surface of ZrO2. J. Phys. Chem. C. 2, 11202–11208 (2010). https://doi.org/10.1021/jp1028933

    CAS  Article  Google Scholar 

  77. C.M. Lousada, M. Trummer, M. Jonsson, Reactivity of H 2 O 2 towards different UO 2 -based materials : the relative impact of radiolysis products revisited. J Nucl Mater 434, 434–439 (2013). https://doi.org/10.1016/j.jnucmat.2011.06.003

    CAS  Article  Google Scholar 

Download references

Funding

The authors thank the Ministry of Education and Science of Ukraine for financial support in the framework of project number 0121U109476 (“Engineering of metal oxide catalysts with the regulating activity function for hydroxyl radical water disinfection”, 2021–2023). V.K. thanks the National Research Foundation of Ukraine (project number 2020.02/0043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetiana Tatarchuk.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tatarchuk, T., Danyliuk, N., Shyichuk, A. et al. Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide. emergent mater. 5, 89–103 (2022). https://doi.org/10.1007/s42247-021-00323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00323-1

Keywords

  • Cobalt ferrite
  • Green synthesis
  • Grape extract
  • Hydrogen peroxide
  • Catalyst