Skip to main content

Advertisement

Log in

Recent advances in cellulose-based hydrophobic food packaging

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Global food packaging is a billion-dollar market that is projected to reach USD 464 billion by 2027. Various regulations, bans, and standards paved the way for utilizing environmentally acceptable and biodegradable materials including cellulose and its derivatives as food packaging materials. Considering end-user application requirements, a high priority has been afforded to the enhancement of the performance of nanocellulose-based sustainable materials. The swelling behavior of cellulosic materials, low resistance to wettability, and inherent sensitivity to liquid water and moisture are those characteristics of cellulosic surfaces that have made their utilization in the packaging industry more challenging. To make cellulose a more mainstream raw material for the sustainable packaging industry, surface hydrophobic modification of cellulose can be a prior choice. Hydrophobic modification strategies provide a barrier to wettability and offer low permeability to moisture for cellulose to improve the water barrier property and mechanical stability of those packaging materials that utilize cellulose as host matrix, reinforcement agent, and binder in thin films or as a coating for paper-based matrices. Moreover, superhydrophobic coatings can be applied to the inner surface of food packaging to reduce and even eliminate the adhesion of liquid foods on the inside of food packaging leading to waste reduction. This work aimed to comprehensively review the state-of-knowledge studies about hydrophobic cellulose-based packaging materials and elucidate the key indicators of each method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Not applicable.

References

  1. P. Jariyasakoolroj, P. Leelaphiwat, N. Harnkarnsujarit, Advances in research and development of bioplastic for food packaging. J. Sci. Food Agric. 100(14), 5032–5045 (2020)

    Article  CAS  Google Scholar 

  2. N. Harnkarnsujarit et al., Bioplastic for Sustainable Food Packaging, in Sustainable Food Processing and Engineering Challenges. (Elsevier, 2021), pp. 203–277

    Chapter  Google Scholar 

  3. S. Balaji et al., Hydrophobic nanocomposites of PBAT with Cl-fn-POSS nanofiller as compostable food packaging films. Polym. Eng. Sci. 61(1), 314–326 (2021)

    Article  CAS  Google Scholar 

  4. L.A. Schaider et al., Fluorinated compounds in US fast food packaging. Environ. Sci. Technol. Lett. 4(3), 105–111 (2017)

    Article  CAS  Google Scholar 

  5. H. Sawada, Y. Endo, Y. Oikawa, Preparation and applications of wettability-controlled fluoroalkyl end-capped oligomer/cellulose nanofiber composites. J. Compos. Mater. 55(5), 609–623 (2021)

    Article  CAS  Google Scholar 

  6. J. Jeevahan et al., Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 15(2), 231–250 (2018)

    Article  CAS  Google Scholar 

  7. A. Nešić et al., Prospect of polysaccharide-based materials as advanced food packaging. Molecules 25(1), 135 (2020)

    Article  CAS  Google Scholar 

  8. I.S. Bayer, Superhydrophobic coatings from ecofriendly materials and processes: a review. Adv. Mater. Interfaces 7(13), 2000095 (2020)

    Article  CAS  Google Scholar 

  9. McGuire, G., hydrophobic coatings and the drive to replace plastic packaging 2019

  10. T. Li et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021)

    Article  CAS  Google Scholar 

  11. N. Harnkarnsujarit, Y. Li, Structure–property modification of microcrystalline cellulose film using agar and propylene glycol alginate. J. Appl. Polym. Sci. 134(47), 45533 (2017)

    Article  CAS  Google Scholar 

  12. F. Li, E. Mascheroni, L. Piergiovanni, The potential of nanocellulose in the packaging field: a review. Packag. Technol. Sci. 28(6), 475–508 (2015)

    Article  CAS  Google Scholar 

  13. U. Qasim et al., Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environmental Chemistry Letters, 1–29 (2020)

  14. J. Song, O.J. Rojas, Approaching super-hydrophobicity from cellulosic materials: a review. Nord. Pulp Pap. Res. J 28(2), 216–238 (2013)

    Article  CAS  Google Scholar 

  15. Y. Teng et al., Facile fabrication of superhydrophobic paper with durability, chemical stability and self-cleaning by roll coating with modified nano-TiO 2. Appl. Nanosci. 10(11), 4063–4073 (2020)

    Article  CAS  Google Scholar 

  16. Y. Xie et al., Surface hydrophobic modification of microcrystalline cellulose by poly (methylhydro) siloxane using response surface methodology. Polymers 10(12), 1335 (2018)

    Article  CAS  Google Scholar 

  17. H. Teisala, M. Tuominen, J. Kuusipalo, Superhydrophobic coatings on cellulose-based materials: fabrication, properties, and applications. Adv. Mater. Interfaces 1(1), 1300026 (2014)

    Article  CAS  Google Scholar 

  18. P. Samyn, Wetting and hydrophobic modification of cellulose surfaces for paper applications. J. Mater. Sci. 48(19), 6455–6498 (2013)

    Article  CAS  Google Scholar 

  19. A. Marmur, Soft contact: measurement and interpretation of contact angles. Soft Matter 2(1), 12–17 (2006)

    Article  CAS  Google Scholar 

  20. T. Huhtamäki et al., Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 13(7), 1521–1538 (2018)

    Article  CAS  Google Scholar 

  21. Y. Dai et al., Determination of hydrophobic degree of paper packaging materials by a tracer-assisted headspace gas chromatography. Nord. Pulp Pap. Res. J. 35(3), 370–375 (2020)

    Article  CAS  Google Scholar 

  22. M. Krasowska, J. Zawala, K. Malysa, Air at hydrophobic surfaces and kinetics of three phase contact formation. Adv. Coll. Interface. Sci. 147, 155–169 (2009)

    Article  CAS  Google Scholar 

  23. M. Kwiatkowski et al., Wettability of polymeric materials after dielectric barrier discharge atmospheric-pressure plasma jet treatment. Sensors and Materials 30(5), 1207–1212 (2018)

    CAS  Google Scholar 

  24. T. Panrong, T. Karbowiak, N. Harnkarnsujarit, Effects of acetylated and octenyl-succinated starch on properties and release of green tea compounded starch/LLDPE blend films. Journal of Food Engineering 284, 110057 (2020)

    Article  CAS  Google Scholar 

  25. M.A. Hubbe, D.J. Gardner, W. Shen, Contact angles and wettability of cellulosic surfaces: A review of proposed mechanisms and test strategies. BioResources 10(4), 8657–8749 (2015)

    Article  CAS  Google Scholar 

  26. H.E. Jeong et al., Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography. J. Colloid Interface Sci. 339(1), 202–207 (2009)

    Article  CAS  Google Scholar 

  27. N. Su et al., Hydrophobic treatment of bamboo with rosin. Construction and Building Materials 271, 121507 (2021)

    Article  CAS  Google Scholar 

  28. J. De Coninck, M.J. de Ruijter, M. Voué, Dynamics of wetting. Curr. Opin. Colloid Interface Sci. 6(1), 49–53 (2001)

    Article  Google Scholar 

  29. N. Shardt, J.A. Elliott, Gibbsian Thermodynamics of Cassie-Baxter Wetting (Were Cassie and Baxter Wrong? Revisited). Langmuir 34(40), 12191–12198 (2018)

    Article  CAS  Google Scholar 

  30. X. Zhang et al., Synthesis of superhydrophobic surfaces with Wenzel and Cassie-Baxter state: experimental evidence and theoretical insight. Nanotechnology 29(48), 485601 (2018)

    Article  CAS  Google Scholar 

  31. S.S. Hamdani et al., Chitosan–Graft–Poly (dimethylsiloxane)/Zein Coatings for the Fabrication of Environmentally Friendly Oil-and Water-Resistant Paper. ACS Sustainable Chemistry & Engineering 8(13), 5147–5155 (2020)

    Article  CAS  Google Scholar 

  32. S.L. Balasubramaniam, A.S. Patel, B. Nayak, Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packaging and Shelf Life 26, 100587 (2020)

    Article  Google Scholar 

  33. W. Li et al., Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications. Cellulose 26(5), 3271–3284 (2019)

    Article  CAS  Google Scholar 

  34. S. Ifuku et al., Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromol 8(6), 1973–1978 (2007)

    Article  CAS  Google Scholar 

  35. M. Jonoobi et al., Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2), 299–307 (2010)

    Article  CAS  Google Scholar 

  36. K. Chi, J.M. Catchmark, Improved eco-friendly barrier materials based on crystalline nanocellulose/chitosan/carboxymethyl cellulose polyelectrolyte complexes. Food Hydrocolloids 80, 195–205 (2018)

    Article  CAS  Google Scholar 

  37. M.N.F., Norrrahim et al., Performance Evaluation of Cellulose Nanofiber Reinforced Polymer Composites. Functional Composites and Structures (chapter 7 ), Biocomposite and Synthetic Composites for Automotive Applications, Woodhead Publishing Series in Composites Science and Engineering. 199–215 (2021)

  38. V.S.D. Almeida et al., Thermal, Morphological, and Mechanical Properties of Regular and Waxy Maize Starch Films Reinforced with Cellulose Nanofibers (CNF). Materials Research, 23(2) (2020)

  39. R.A. Ilyas et al., Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohyd. Polym. 202, 186–202 (2018)

    Article  CAS  Google Scholar 

  40. H. Dong et al., Smart colorimetric sensing films with high mechanical strength and hydrophobic properties for visual monitoring of shrimp and pork freshness. Sensors and Actuators B: Chemical 309, 127752 (2020)

    Article  CAS  Google Scholar 

  41. Q. Shang et al., Bio-inspired hydrophobic modification of cellulose nanocrystals with castor oil. Carbohyd. Polym. 191, 168–175 (2018)

    Article  CAS  Google Scholar 

  42. E. Kontturi et al., Amorphous Characteristics of an Ultrathin Cellulose Film. Biomacromol 12(3), 770–777 (2011)

    Article  CAS  Google Scholar 

  43. W.-T. Ke, H.-L. Chiu, Y.-C. Liao, Multifunctionalized Cellulose Nanofiber for Water-Repellent and Wash-Sustainable Coatings on Fabrics. Langmuir 36(28), 8144–8151 (2020)

    Article  CAS  Google Scholar 

  44. J. Vartiainen et al., Hydrophobization, smoothing, and barrier improvements of cellulose nanofibril films by sol–gel coatings. J. Coat. Technol. Res. 17(1), 305–314 (2020)

    Article  CAS  Google Scholar 

  45. B. Musikavanhu et al., Facile method for the preparation of superhydrophobic cellulosic paper. Applied Surface Science 496, 143648 (2019)

    Article  CAS  Google Scholar 

  46. A. Baidya et al., Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11(11), 11091–11099 (2017)

    Article  CAS  Google Scholar 

  47. M. Li et al., In situ growth of nano-ZnO/GQDs on cellulose paper for dual repelling function against water and bacteria. Materials Letters 283, 128838 (2021)

    Article  CAS  Google Scholar 

  48. N. Forsman et al., Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohyd. Polym. 173, 392–402 (2017)

    Article  CAS  Google Scholar 

  49. M. Yao et al., Facile fabrication of hydrophobic cellulose-based organic/inorganic nanomaterial modified with POSS by plasma treatment. Carbohydrate Polymers 253, 117193 (2021)

    Article  CAS  Google Scholar 

  50. S. Leal et al., Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. Cellulose 27(18), 10733–10746 (2020)

    Article  CAS  Google Scholar 

  51. M. Hashmi et al., Carboxymethyl cellulose (CMC) based electrospun composite nanofiber mats for food packaging. Polymers 13(2), 302 (2021)

    Article  CAS  Google Scholar 

  52. A. Tursi et al., Low pressure plasma functionalized cellulose fiber for the remediation of petroleum hydrocarbons polluted water. J. Hazard. Mater. 373, 773–782 (2019)

    Article  CAS  Google Scholar 

  53. D. Hermawan et al., Development of Seaweed-based Bamboo Microcrystalline Cellulose Films Intended for Sustainable Food Packaging Applications. 2019. 14(2): 22 (2019)

  54. J. Chen et al., Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. Int. J. Biol. Macromol. 165, 2295–2302 (2020)

    Article  CAS  Google Scholar 

  55. Z. Ou et al., Cellulose Isolated From Waste Rubber Wood and Its Application in PLA Based Composite Films. Frontiers in bioengineering and biotechnology 9, 246 (2021)

    Article  Google Scholar 

  56. Z. Song, H. Xiao, Y. Zhao, Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd. Polym. 111, 442–448 (2014)

    Article  CAS  Google Scholar 

  57. R.D. Kale, V.G. Gorade, Preparation of acylated microcrystalline cellulose using olive oil and its reinforcing effect on poly (lactic acid) films for packaging application. J. Polym. Res. 25(3), 1–14 (2018)

    Article  CAS  Google Scholar 

  58. Y. Wang et al., Gelatin-Based Nanocomposite Film with Bacterial Cellulose–MgO Nanoparticles and Its Application in Packaging of Preserved Eggs. Coatings 11(1), 39 (2021)

    Article  CAS  Google Scholar 

  59. N. Frecilla et al. Enhanced Hydrophobicity and Elasticity of Bacterial Cellulose Films by Addition of Beeswax. in Macromolecular Symposia. Wiley Online Library (2020)

  60. P. Cerny et al., Highly Hydrophobic Organosilane-Functionalized Cellulose: A Promising Filler for Thermoplastic Composites. Materials 14(8), 2005 (2021)

    Article  CAS  Google Scholar 

  61. Y. Xu et al., Effect of endoglucanase and high-pressure homogenization post-treatments on mechanically grinded cellulose nanofibrils and their film performance. Carbohydrate Polymers 253, 117253 (2021)

    Article  CAS  Google Scholar 

  62. X. Zhang et al., Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber. Food Hydrocolloids 112, 106337 (2021)

    Article  CAS  Google Scholar 

  63. A.A. Oyekanmi et al., Improved Hydrophobicity of Macroalgae Biopolymer Film Incorporated with Kenaf Derived CNF Using Silane Coupling Agent. Molecules 26(8), 2254 (2021)

    Article  CAS  Google Scholar 

  64. N. Jamaluddin et al., Effects of Acid-Anhydride-Modified Cellulose Nanofiber on Poly (Lactic Acid) Composite Films. Nanomaterials 11(3), 753 (2021)

    Article  CAS  Google Scholar 

  65. S. Roy et al., Incorporation of melanin nanoparticles improves UV-shielding, mechanical and antioxidant properties of cellulose nanofiber based nanocomposite films. Materials Today Communications 24, 100984 (2020)

    Article  CAS  Google Scholar 

  66. T. Liang, L. Wang, Preparation, Characterization and Application of a Low Water-Sensitive Artemisia sphaerocephala Krasch. Gum Intelligent Film Incorporated with Anionic Cellulose Nanofiber as a Reinforcing Component. Polymers 12(1), 247 (2020)

    Article  CAS  Google Scholar 

  67. Q. Wang et al., Superhydrophobic paper fabricated via nanostructured titanium dioxide-functionalized wood cellulose fibers. J. Mater. Sci. 55(16), 7084–7094 (2020)

    Article  CAS  Google Scholar 

  68. J.-K. Kim, B. Choi, J. Jin, Transparent, water-stable, cellulose nanofiber-based packaging film with a low oxygen permeability. Carbohydrate Polymers 249, 116823 (2020)

    Article  CAS  Google Scholar 

  69. X. Niu et al., Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohyd. Polym. 183, 102–109 (2018)

    Article  CAS  Google Scholar 

  70. S.L. Sobhana et al., Layered double hydroxide interfaced stearic acid–Cellulose fibres: A new class of super-hydrophobic hybrid materials. Colloids Surf., A 522, 416–424 (2017)

    Article  CAS  Google Scholar 

  71. P. Orsolini et al., Superhydrophobicity of nanofibrillated cellulose materials through polysiloxane nanofilaments. Cellulose 25(2), 1127–1146 (2018)

    Article  CAS  Google Scholar 

  72. G. de Souza et al., Low permeable hydrophobic nanofibrilated cellulose films modified by dipping and heating processing technique. Cellulose 28(3), 1617–1632 (2021)

    Article  CAS  Google Scholar 

  73. S. Rizal et al., Isolation of Textile Waste Cellulose Nanofibrillated Fibre Reinforced in Polylactic Acid-Chitin Biodegradable Composite for Green Packaging Application. Polymers 13(3), 325 (2021)

    Article  CAS  Google Scholar 

  74. Q. Gao et al., Preparation of a microfibrillated cellulose/chitosan/polypyrrole film for Active Food Packaging. Progress in Organic Coatings 149, 105907 (2020)

    Article  CAS  Google Scholar 

  75. T. Ben Shalom et al., Cellulose Nanocrystals and Corn Zein Oxygen and Water Vapor Barrier Biocomposite Films. Nanomaterials 11(1), 247 (2021)

    Article  CAS  Google Scholar 

  76. K. Jin et al., Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose. Int. J. Biol. Macromol. 162, 1109–1117 (2020)

    Article  CAS  Google Scholar 

  77. B.M. Trinh, T. Mekonnen, Hydrophobic esterification of cellulose nanocrystals for epoxy reinforcement. Polymer 155, 64–74 (2018)

    Article  CAS  Google Scholar 

  78. X. Huang et al., Enhancement of hydrophobic properties of cellulose fibers via grafting with polymeric epoxidized soybean oil. ACS Sustainable Chemistry & Engineering 5(2), 1619–1627 (2017)

    Article  CAS  Google Scholar 

  79. J. Chen et al., Processing, and characterization of thermoplastic corn starch-based film/paper composites containing microcrystalline cellulose. Journal of the Science of Food and Agriculture. (2021). https://doi.org/10.1002/jsfa.11315

  80. Q. Chen et al., Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent. Int. J. Biol. Macromol. 142, 846–854 (2020)

    Article  CAS  Google Scholar 

  81. T. Żelaziński, Properties of Biocomposites from Rapeseed Meal, Fruit Pomace and Microcrystalline Cellulose Made by Press Pressing: Mechanical and Physicochemical Characteristics. Materials 14(4), 890 (2021)

    Article  CAS  Google Scholar 

  82. C. Ramírez et al., Study of contact angle, wettability and water vapor permeability in carboxymethylcellulose (CMC) based film with murta leaves (Ugni molinae Turcz) extract. J. Food Eng. 109(3), 424–429 (2012)

    Article  CAS  Google Scholar 

  83. Putri, R.D.A., A. Setiawan, and P.D. Anggraini. Effect of carboxymethyl cellulose (CMC) as biopolymers to the edible film sorghum starch hydrophobicity characteristics. in AIP conference proceedings. AIP Publishing LLC (2017)

  84. M.Z. Yao et al., Facile fabrication of hydrophobic cellulose-based organic/inorganic nanomaterial modified with POSS by plasma treatment. Carbohydrate Polymers 253, 117193 (2021)

    Article  CAS  Google Scholar 

  85. L.R. Mugwagwa, A.F. Chimphango, Enhancing the functional properties of acetylated hemicellulose films for active food packaging using acetylated nanocellulose reinforcement and polycaprolactone coating. Food Packaging and Shelf Life 24, 100481 (2020)

    Article  Google Scholar 

  86. B. Hutton-Prager et al., Hydrophobic development and mechanical properties of cellulose substrates supercritically impregnated with food-grade waxes. Cellulose 28(3), 1633–1646 (2021)

    Article  CAS  Google Scholar 

  87. P. Chawla et al., Potential of Gum Arabic Functionalized Iron Hydroxide Nanoparticles Embedded Cellulose Paper for Packaging of Paneer. Nanomaterials 11(5), 1308 (2021)

    Article  CAS  Google Scholar 

  88. X. Zhou et al., Diisocyanate modifiable commercial filter paper with tunable hydrophobicity, enhanced wet tensile strength and antibacterial activity. Carbohydrate Polymers 248, 116791 (2020)

    Article  CAS  Google Scholar 

  89. Y. Wu et al., Superhydrophobic modification of cellulose film through light curing polyfluoro resin in situ. Cellulose 25(3), 1617–1623 (2018)

    Article  CAS  Google Scholar 

  90. K. Wu et al., Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids 79, 301–309 (2018)

    Article  CAS  Google Scholar 

  91. B. Rukmanikrishnan et al., Rheological and Antimicrobial Properties of Silica and silver Nanoparticles-reinforced K-carrageenan/hydroxyethyl Cellulose Composites for Food Packaging Applications. (2021)

  92. B. Rukmanikrishnana et al.,  Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties. Int. J. Biol. Macromol. 153, 55–62 (2020)

    Article  CAS  Google Scholar 

  93. G.K. Deshwal, N.R. Panjagari, T. Alam, An overview of paper and paper based food packaging materials: health safety and environmental concerns. J. Food Sci. Technol. 56(10), 4391–4403 (2019)

    Article  Google Scholar 

  94. J.-W. Rhim, Effect of moisture content on tensile properties of paper-based food packaging materials. Food Science and Biotechnology 19(1), 243–247 (2010)

    Article  CAS  Google Scholar 

  95. Z. He et al., Cellulose paper-based strapping products for green/sustainable packaging needs. Paper and Biomaterials 4(3), 54 (2019)

    CAS  Google Scholar 

  96. Z. Shen et al., Facile fabrication of hydrophobic cellulosic paper with good barrier properties via PVA/AKD dispersion coating. Nord. Pulp Pap. Res. J. 34(4), 516–524 (2019)

    Article  CAS  Google Scholar 

  97. X. Wang et al., Degradable Gelatin-Based Supramolecular Coating for Green Paper Sizing. ACS Applied Materials & Interfaces, 13 (1), 1367–1376 (2020)

  98. S.A. Khan et al., Fabrication of superhydrophobic filter paper and foam for oil–water separation based on silica nanoparticles from sodium silicate. J. Sol-Gel. Sci. Technol. 81(3), 912–920 (2017)

    Article  CAS  Google Scholar 

  99. Z. Li et al., Stimuli-responsive cellulose paper materials. Carbohydrate polymers 210, 350–363 (2019)

    Article  CAS  Google Scholar 

  100. X. Zhou et al., Colorful nanostructured TiO2 film with superhydrophobic–superhydrophilic switchable wettability and anti-fouling property. J. Alloy. Compd. 798, 257–266 (2019)

    Article  CAS  Google Scholar 

  101. V. Dichiarante et al., A short-chain multibranched perfluoroalkyl thiol for more sustainable hydrophobic coatings. Acs Sustainable Chemistry & Engineering 6(8), 9734–9743 (2018)

    Article  CAS  Google Scholar 

  102. M.A. Hubbe, P. Tyagi, L. Pal, Nanopolysaccharides in Barrier Composites, in Advanced Functional Materials from Nanopolysaccharides. (Springer, 2019), pp. 321–366

    Chapter  Google Scholar 

  103. S. Kopacic et al., Alginate and chitosan as a functional barrier for paper-based packaging materials. Coatings 8(7), 235 (2018)

    Article  CAS  Google Scholar 

  104. C. Cordt, A. Geissler, M. Biesalski, Regenerative Superhydrophobic Paper Coatings by In Situ Formation of Waxy Nanostructures. Adv. Mater. Interfaces 8(2), 2001265 (2021)

    Article  CAS  Google Scholar 

  105. T. Shen et al., Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials 13(15), 3308 (2020)

    Article  CAS  Google Scholar 

  106. B.-Y. Liu et al., Fabrication of superhydrophobic coatings with edible materials for super-repelling non-Newtonian liquid foods. Chem. Eng. J. 371, 833–841 (2019)

    Article  CAS  Google Scholar 

  107. T. Wang, Y. Zhao, Fabrication of thermally and mechanically stable superhydrophobic coatings for cellulose-based substrates with natural and edible ingredients for food applications. Food Hydrocolloids 120, 106877 (2021)

    Article  CAS  Google Scholar 

  108. A. Rudawska, Assessment of Surface Preparation for the Bonding/Adhesive Technology (Surface Treatment in Bonding Technology; Elsevier, Amsterdam, The Netherlands, 2019), pp. 227–275

    Google Scholar 

  109. K. Khwaldia, E. Arab-Tehrany, S. Desobry, Biopolymer coatings on paper packaging materials. Comprehensive reviews in food science and food safety 9(1), 82–91 (2010)

    Article  CAS  Google Scholar 

  110. W. Wang et al., Multilayer surface construction for enhancing barrier properties of cellulose-based packaging. Carbohydrate Polymers 255, 117431 (2021)

    Article  CAS  Google Scholar 

  111. P. Nechita, Review on polysaccharides used in coatings for food packaging papers. Coatings 10(6), 566 (2020)

    Article  CAS  Google Scholar 

  112. U. VrabičBrodnjak, K. Tihole, Chitosan Solution Containing Zein and Essential Oil as Bio Based Coating on Packaging Paper. Coatings 10(5), 497 (2020)

    Article  CAS  Google Scholar 

  113. I. Torun et al., Transferring the structure of paper for mechanically durable superhydrophobic surfaces. Surface and Coatings Technology 405, 126543 (2021)

    Article  CAS  Google Scholar 

  114. S. Ni et al., Laccase-catalyzed chitosan-monophenol copolymer as a coating on paper enhances its hydrophobicity and strength. Progress in Organic Coatings 151, 106026 (2021)

    Article  CAS  Google Scholar 

  115. Y. He et al., Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications. Carbohydrate polymers 252, 117156 (2021)

    Article  CAS  Google Scholar 

  116. K. Jin et al., Nanofibrillated cellulose as coating agent for food packaging paper. Int. J. Biol. Macromol. 168, 331–338 (2021)

    Article  CAS  Google Scholar 

  117. P.A. Parvathy, S.K. Sahoo, Hydrophobic, moisture resistant and biorenewable paper coating derived from castor oil based epoxy methyl ricinoleate with repulpable potential. Progress in Organic Coatings 158, 106347 (2021)

    Article  CAS  Google Scholar 

  118. X. Jing et al., Excellent coating of collagen fiber/chitosan-based materials that is water- and oil-resistant and fluorine-free. Carbohydrate Polymers 266, 118173 (2021)

    Article  CAS  Google Scholar 

  119. C. Rovera et al., Water vapor barrier properties of wheat gluten/silica hybrid coatings on paperboard for food packaging applications. Food Packaging and Shelf Life 26, 100561 (2020)

    Article  Google Scholar 

  120. W. Wang et al., Improving moisture barrier properties of paper sheets by cellulose stearoyl ester-based coatings. Carbohydrate polymers 235, 115924 (2020)

    Article  CAS  Google Scholar 

  121. D. Kansal et al., Food-Safe Chitosan-Zein Dual-Layer Coating for Water-and Oil-Repellent Paper Substrates. ACS Sustainable Chemistry & Engineering 8(17), 6887–6897 (2020)

    Article  CAS  Google Scholar 

  122. S. Nurul Syahida et al., Development and characterisation of gelatine/palm wax/lemongrass essential oil (GPL)-coated paper for active food packaging. Packag. Technol. Sci. 33(10), 417–431 (2020)

    CAS  Google Scholar 

  123. D. Kansal et al., Starch and Zein Biopolymers as a Sustainable Replacement for PFAS, Silicone Oil, and Plastic-Coated Paper. Ind. Eng. Chem. Res. 59(26), 12075–12084 (2020)

    Article  CAS  Google Scholar 

  124. H. Thurber, G.W. Curtzwiler, Suitability of poly (butylene succinate) as a coating for paperboard convenience food packaging. International Journal of Biobased Plastics 2(1), 1–12 (2020)

    Article  Google Scholar 

  125. K. Chi, H. Wang, J.M. Catchmark, Sustainable starch-based barrier coatings for packaging applications. Food Hydrocolloids 103, 105696 (2020)

    Article  CAS  Google Scholar 

  126. T. Akter et al., Microcrystalline cellulose reinforced chitosan coating on kraft paper. Cellul Chem Technol Editura acad romane calea 13, 1–2 (2020)

    Google Scholar 

  127. G. Oliveira et al., Feasibility of chitosan crosslinked with genipin as biocoating for cellulose-based materials. Carbohydrate polymers 242, 116429 (2020)

    Article  CAS  Google Scholar 

  128. M. Gatto et al., Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohyd. Polym. 210, 56–63 (2019)

    Article  CAS  Google Scholar 

  129. L. Urbina et al., Valorization of apple waste for active packaging: Multicomponent polyhydroxyalkanoate coated nanopapers with improved hydrophobicity and antioxidant capacity. Food Packaging and Shelf Life 21, 100356 (2019)

    Article  Google Scholar 

  130. Y. Ni, J. Yi, Research on improving the surface hydrophobicity of paper coated by poly-vinyl alcohol-itaconic acid grafting copolymer. Prog. Org. Coat. 131, 152–158 (2019)

    Article  CAS  Google Scholar 

  131. K. Vaezi, G. Asadpour, S.H. Sharifi, Effect of coating with novel bio nanocomposites of cationic starch/cellulose nanocrystals on the fundamental properties of the packaging paper. Polymer Testing 80, 106080 (2019)

    Article  CAS  Google Scholar 

  132. S. Ni et al., ZnO nanoparticles enhanced hydrophobicity for starch film and paper. Mater. Lett. 230, 207–210 (2018)

    Article  CAS  Google Scholar 

  133. C. Reverdy et al., One-step superhydrophobic coating using hydrophobized cellulose nanofibrils. Colloids Surf., A 544, 152–158 (2018)

    Article  CAS  Google Scholar 

  134. Z. Li, M. Rabnawaz, Oil-and water-resistant coatings for porous cellulosic substrates. ACS Applied Polymer Materials 1(1), 103–111 (2018)

    Article  CAS  Google Scholar 

  135. P. Willberg-Keyriläinen et al., Cellulose fatty acid ester coated papers for stand-up pouch applications. J. Appl. Polym. Sci. 135(48), 46936 (2018)

    Article  CAS  Google Scholar 

  136. S. Liu et al., Argon plasma treatment of fluorine-free silane coatings: a facile, environment-friendly method to prepare durable, superhydrophobic fabrics. Adv. Mater. Interfaces 4(11), 1700027 (2017)

    Article  CAS  Google Scholar 

  137. J. Bota et al., Surface characteristics and enhancement of water vapour properties of paperboard coated with polycaprolactone nanocomposites. J. Adhes. Sci. Technol. 31(5), 466–486 (2017)

    Article  CAS  Google Scholar 

  138. T. Arbatan et al., Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chem. Eng. J. 210, 74–79 (2012)

    Article  CAS  Google Scholar 

  139. Y. Echegoyen, C. Nerín, Nanoparticle release from nano-silver antimicrobial food containers. Food Chem. Toxicol. 62, 16–22 (2013)

    Article  CAS  Google Scholar 

  140. P. Vera et al., Nano selenium as antioxidant agent in a multilayer food packaging material. Anal. Bioanal. Chem. 408(24), 6659–6670 (2016)

    Article  CAS  Google Scholar 

  141. V.G.L. Souza, A.L. Fernando, Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packag. Shelf Life 8, 63–70 (2016)

    Article  Google Scholar 

  142. Y. Echegoyen, S. Rodríguez, C. Nerín, Nanoclay migration from food packaging materials. Food Additives & Contaminants: Part A 33(3), 530–539 (2016)

    Article  CAS  Google Scholar 

  143. J.-Y. Huang, X. Li, W. Zhou, Safety assessment of nanocomposite for food packaging application. Trends Food Sci. Technol. 45(2), 187–199 (2015)

    Article  CAS  Google Scholar 

  144. M. Cushen et al., Nanotechnologies in the food industry–Recent developments, risks and regulation. Trends Food Sci. Technol. 24(1), 30–46 (2012)

    Article  CAS  Google Scholar 

  145. Regulation, C., No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Official Journal of the European Union, Comision regulation (EU), 2011

  146. H. Rauscher, K. Rasmussen, B. Sokull-Klüttgen, Regulatory aspects of nanomaterials in the EU. Chem. Ing. Tec. 89(3), 224–231 (2017)

    Article  CAS  Google Scholar 

  147. E.S. Committee et al., Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA journal 16(7), e05327 (2018)

    Google Scholar 

  148. T. Kovacs et al., An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4(3), 255–270 (2010)

    Article  CAS  Google Scholar 

  149. G.M. DeLoid et al., Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ. Sci. Nano 6(7), 2105–2115 (2019)

    Article  CAS  Google Scholar 

  150. S. Beck, J. Bouchard, R. Berry, Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13(5), 1486–1494 (2012)

    Article  CAS  Google Scholar 

  151. E.D. Cranston, D.G. Gray, Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromol 7(9), 2522–2530 (2006)

    Article  CAS  Google Scholar 

  152. C. Ventura et al., On the toxicity of cellulose nanocrystals and nanofibrils in animal and cellular models. Cellulose 27(10), 5509–5544 (2020)

    Article  CAS  Google Scholar 

  153. D. Klemm et al., Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater. Today 21(7), 720–748 (2018)

    Article  CAS  Google Scholar 

  154. X. Cao et al., Cytotoxicity and cellular proteome impact of cellulose nanocrystals using simulated digestion and an in vitro small intestinal epithelium cellular model. NanoImpact 20, 100269 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Marzieh Badiei: conseptualization, writing (original draft preparation), writing (review and editing).

Nilofar Asim: conseptualization, writing (original draft preparation), writing (review and editing).

Masita Mohammad: critical revision.

Corresponding author

Correspondence to Nilofar Asim.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Authors have given their consent for the publication of identifiable details within the text (“Recent advances in cellulose-based hydrophobic food packaging”) to be published in the “Emergent Materials” Journal.

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

• Resistance against water and moisture is important property for food packaging material.

• Hydrophobicity is a combined effect of roughness and chemical composition of surface.

• Physical and chemical modifications improve hydrophobicity of cellulosic materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asim, N., Badiei, M. & Mohammad, M. Recent advances in cellulose-based hydrophobic food packaging. emergent mater. 5, 703–718 (2022). https://doi.org/10.1007/s42247-021-00314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00314-2

Keywords

Navigation