Skip to main content
Log in

Moiré physics in twisted van der Waals heterostructures of 2D materials

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Artificial moiré superlattices are formed by vertically stacking two monolayers of two-dimensional (2D) materials and rotating one of the layers with a finite twist angle. The resultant moiré pattern in the twisted heterostructures exhibits periodic length scale larger than that of lattice atoms of the individual layers. Furthermore, the moiré pattern is found to control the interlayer hybridization in a twisted bilayer heterostructure creating strongly correlated quantum states. Owing to the moiré pattern–introduced interlayer hybridization, several exotic quantum phenomena such as flat bands, moiré excitons, surface plasmon polaritons, surface phonon polaritons, surface exciton polaritons, interlayer magnetism, and 2D ferroelectricity are recently found in the engineered materials with additional twist degree of freedom. Here we review some notable advances in moiré physics associated with twisted bilayer heterostructures of 2D crystals including (A) flat bands in the twisted bilayer graphene, (B) exciton superlattices in the twisted transition metal dichalcogenides, (C) topological polaritons and photonic superlattices in the twisted 2D metal oxides, (D) interlayer magnetism in the stacked 2D magnetic semiconductors, and (E) ferroelectricity in moiré quantum materials. This story-of-twist begins with (1) an introduction to twisted heterostructures, (2) a correlation between van der Waals heterostructures and moiré superlattices, (3) how to design and fabricate moiré quantum materials, (4) discussion on five emergent quantum phenomena associated with twisted bilayer heterostructures as listed above, and finally (5) what are the challenges in fabrication, characterization, and applications of twisted heterostructures. This review concludes with an outlook pointing toward innovation in large-area design of twisted heterostructures for their potential applications in quantum nanoelectronics, quantum photonics, optoelectronics, quantum computing, nonvolatile memory, quantum emission, and quantum communication. Moiré physics of moiré quantum materials is a relatively new and extremely exciting area of research. This article provides a general overview of recent advances of moiré physics in twisted van der Waals heterostructures of 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Y. Andrei and A. H. MacDonald. Graphene bilayers with a twist. Nature Materials 19, 1265–1275 (2020). https://doi.org/10.1038/s41563-020-00840-0

  2. A. H. MacDonald, Bilayer Graphene’s Wicked, Twisted Road. Physics 12, 12 (2019). https://doi.org/10.1103/physics.12.12

  3. R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, and C. R. Dean, Twistable electronics with dynamically rotatable heterostructures. Science 361(6403), 690–693 (2018). https://doi.org/10.1126/science.aat6981

  4. Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero. Nature, 556, 80–84 (2018). https://doi.org/10.1038/nature26154

  5. E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Flat bands in slightly twisted bilayer graphene: Tight-binding calculations. Phys Rev B, 82, 121407(R) (2010). https://doi.org/10.1103/PhysRevB.82.121407

  6. Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat Chern bands in moiré superlattices, Phys. Rev. B, 99, 075127 (2019). https://doi.org/10.1103/PhysRevB.99.075127

  7. Z. Bi, N. F. Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B, 100, 035448 (2019). https://doi.org/10.1103/PhysRevB.100.035448

  8. Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F. Superconductivity and Strong Correlations in Moiré Flat Bands. Nature Physics, 16, 725–733 (2020). https://doi.org/10.1038/s41567-020-0906-9

  9. Zhang, Z.; Wang, Y.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat Bands in Twisted Bilayer Transition Metal Dichalcogenides. Nature Physics, 16, 1093–1096 (2020). https://doi.org/10.1038/s41567-020-0958-x

  10. Haddadi, F.; Wu, Q. S.; Kruchkov, A. J.; Yazyev, O. V. Moiré Flat Bands in Twisted Double Bilayer Graphene. Nano Lett, 20, 2410–2415 (2020). https://doi.org/10.1021/acs.nanolett.9b05117

  11. Chebrolu, N. R.; Chittari, B. L.; Jung, J. Flat Bands in Twisted Double Bilayer Graphene. Phys. Rev. B, 99, 235417 (2019). https://doi.org/10.1103/PhysRevB.99.235417

  12. Bistritzer, R.; MacDonald, A. H. Moiré Bands in Twisted Double-Layer Graphene. Proc. Natl. Acad. Sci, 108, 12233–12237 (2011). https://doi.org/10.1073/pnas.1108174108

  13. Lisi, S.; Lu, X.; Benschop, T.; de Jong, T. A.; Stepanov, P.; Duran, J. R.; Margot, F.; Cucchi, I.; Cappelli, E.; Hunter, A.; Tamai, A.; Kandyba, V.; Giampietri, A.; Barinov, A.; Jobst, J.; Stalman, V.; Leeuwenhoek, M.; Watanabe, K.; Taniguchi, T.; Rademaker, L.; van der Molen, S. J.; Allan, M. P.; Efetov, D. K.; Baumberger, F. Observation of Flat Bands in Twisted Bilayer Graphene. Nature Physics, 17, 189–193 (2021). https://doi.org/10.1038/s41567-020-01041-x

  14. Chen, W.; Sun, Z.; Wang, Z.; Gu, L.; Xu, X.; Wu, S.; Gao, C. Direct Observation of van Der Waals Stacking–Dependent Interlayer Magnetism. Science, 366(6468), 983–987 (2019). https://doi.org/10.1126/science.aav1937

  15. Zhang, L.; Zhang, Z.; Wu, F.; Wang, D.; Gogna, R.; Hou, S.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T.; Forrest, S. R.; Deng, H. Twist-Angle Dependence of Moiré Excitons in WS2/MoSe2 Heterobilayers. Nature Communications, 11, Article number: 5888 (2020). https://doi.org/10.1038/s41467-020-19466-6

  16. Guo, H.; Zhang, X.; Lu, G. Shedding Light on Moiré Excitons: A First-Principles Perspective. Sci. Adv, 6(42), eabc5638 (2020). https://doi.org/10.1126/sciadv.abc5638

  17. Jin, C.; Regan, E. C.; Yan, A.; Iqbal Bakti Utama, M.; Wang, D.; Zhao, S.; Qin, Y.; Yang, S.; Zheng, Z.; Shi, S.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Zettl, A.; Wang, F. Observation of Moiré Excitons in WSe2/WS2 Heterostructure Superlattices. Nature, 567, 76–80 (2019). https://doi.org/10.1038/s41586-019-0976-y

  18. Tran, K.; Choi, J.; Singh, A. Moiré and beyond in Transition Metal Dichalcogenide Twisted Bilayers. 2D Materials, 8(2), 022002 (2021).  https://doi.org/10.1088/2053-1583/abd3e7

  19. Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; Qiu, C. W.; Alù, A. Topological Polaritons and Photonic Magic Angles in Twisted α-MoO3 Bilayers. Nature, 582, 209–213 (2020). https://doi.org/10.1038/s41586-020-2359-9

  20. Chen, M.; Lin, X.; Dinh, T. H.; Zheng, Z.; Shen, J.; Ma, Q.; Chen, H.; Jarillo-Herrero, P.; Dai, S. Configurable Phonon Polaritons in Twisted α-MoO3. Nature Materials, 19, 1307–1311 (2020). https://doi.org/10.1038/s41563-020-0732-6

  21. Ni, G. X.; Wang, H.; Wu, J. S.; Fei, Z.; Goldflam, M. D.; Keilmann, F.; Özyilmaz, B.; Castro Neto, A. H.; Xie, X. M.; Fogler, M. M.; Basov, D. N. Plasmons in Graphene Moiré Superlattices. Nature Materials, 14, 1217–1222 (2015). https://doi.org/10.1038/nmat4425

  22. Ni, G. X.; Wang, H.; Jiang, B. Y.; Chen, L. X.; Du, Y.; Sun, Z. Y.; Goldflam, M. D.; Frenzel, A. J.; Xie, X. M.; Fogler, M. M.; Basov, D. N. Soliton Superlattices in Twisted Hexagonal Boron Nitride. Nature Communications, 10, Article number: 4360 (2019). https://doi.org/10.1038/s41467-019-12327-x

  23. Alden, J. S.; Tsen, A. W.; Huang, P. Y.; Hovden, R.; Brown, L.; Park, J.; Muller, D. A.; McEuen, P. L. Strain Solitons and Topological Defects in Bilayer Graphene. PNAS, 110(28), 11256–11260 (2013). https://doi.org/10.1073/pnas.1309394110

  24. Woods, C. R.; Ares, P.; Nevison-Andrews, H.; Holwill, M. J.; Fabregas, R.; Guinea, F.; Geim, A. K.; Novoselov, K. S.; Walet, N. R.; Fumagalli, L. Charge-Polarized Interfacial Superlattices in Marginally Twisted Hexagonal Boron Nitride. Nature Communications, 12, Article number: 347 (2021). https://doi.org/10.1038/s41467-020-20667-2

  25. Stern, M. V.; Waschitz, Y.; Cao, W.; Nevo, I.; Watanabe, K.; Taniguchi, T.; Sela, E.; Urbakh, M.; Hod, O.; Shalom, M. Ben. Interfacial Ferroelectricity by van Der Waals Sliding. Science, 372(6549), 1462–1466 (2021). https://doi.org/10.1126/science.abe8177

  26. P. Zhao, C. Xiao, and Wang Yao, Universal superlattice potential for 2D materials from twisted interface inside h-BN substrate, npj 2D Materials and Applications, 5, Article number: 38 (2021). https://doi.org/10.1038/s41699-021-00221-4

  27. Cui, X.; Sun, L.; Zeng, Y.; Hao, Y.; Liu, Y.; Wang, D.; Yi, Y.; Loh, K. P.; Zheng, J.; Liu, Y. Visualization of Crystallographic Orientation and Twist Angles in Two-Dimensional Crystals with an Optical Microscope. Nano Lett, 20, 6059–6066 (2020). https://doi.org/10.1021/acs.nanolett.0c02098

  28. Luo, Y.; Engelke, R.; Mattheakis, M.; Tamagnone, M.; Carr, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Kim, P.; Wilson, W. L. In Situ Nanoscale Imaging of Moiré Superlattices in Twisted van Der Waals Heterostructures. Nature Communications, 11, Article number: 4209 (2020). https://doi.org/10.1038/s41467-020-18109-0

  29. Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the Electronic Properties of Two-Dimensional Layered Structures through Their Twist Angle. Phys. Rev. B, 95, 075420 (2017). https://doi.org/10.1103/PhysRevB.95.075420

  30. S. Behura, P. Nguyen, S. Che, R. Debbarma, V. Berry, J. Am. Chem. Soc. 137, 13060 (2015)

    Article  CAS  Google Scholar 

  31. Behura, S.; Nguyen, P.; Debbarma, R.; Che, S.; Seacrist, M. R.; Berry, V. Chemical Interaction-Guided, Metal-Free Growth of Large-Area Hexagonal Boron Nitride on Silicon-Based Substrates. ACS Nano, 11, 4985–4994 (2017). https://doi.org/10.1021/acsnano.7b01666

  32. Geim, A. K.; Grigorieva, I. V. Van Der Waals Heterostructures. Nature, 499, 419–425 (2013). https://doi.org/10.1038/nature12385

  33. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D Materials and van Der Waals Heterostructures. Science, 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439

  34. Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H. C.; Huang, Y.; Duan, X. Van Der Waals Heterostructures and Devices. Nature Reviews Materials, 1, Article number: 16042 (2016). https://doi.org/10.1038/natrevmats.2016.42

  35. Rode, J. C.; Smirnov, D.; Belke, C.; Schmidt, H.; Haug, R. J. Twisted Bilayer Graphene: Interlayer Configuration and Magnetotransport Signatures. Ann. Phys., 529(11) (2017). https://doi.org/10.1002/andp.201700025

  36. M. Yankowitz, J. Xue, D. Cormode, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, B.J. LeRoy, Nat. Phys. 8, 382 (2012)

    Article  CAS  Google Scholar 

  37. B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Science 340(80), 1427 (2013)

    Article  CAS  Google Scholar 

  38. L.A. Ponomarenko, R.V. Gorbachev, G.L. Yu, D.C. Elias, R. Jalil, A.A. Patel, A. Mishchenko, A.S. Mayorov, C.R. Woods, J.R. Wallbank, M. Mucha-Kruczynski, B.A. Piot, M. Potemski, I.V. Grigorieva, K.S. Novoselov, F. Guinea, V.I. Fal’ko, A.K. Geim, Nature 497, 594 (2013)

    Article  CAS  Google Scholar 

  39. K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H.C.P. Movva, S. Huang, S. Larentis, C.M. Corbet, T. Taniguchi, K. Watanabe, S.K. Banerjee, B.J. LeRoy, E. Tutuc, Nano Lett. 16, 1989 (2016)

    Article  CAS  Google Scholar 

  40. D. Wang, G. Chen, C. Li, M. Cheng, W. Yang, S. Wu, G. Xie, J. Zhang, J. Zhao, X. Lu, P. Chen, G. Wang, J. Meng, J. Tang, R. Yang, C. He, D. Liu, D. Shi, K. Watanabe, T. Taniguchi, J. Feng, Y. Zhang, G. Zhang, Phys. Rev. Lett. 116, 126101 (2016)

    Article  Google Scholar 

  41. C.R. Woods, F. Withers, M.J. Zhu, Y. Cao, G. Yu, A. Kozikov, M. Ben Shalom, S.V. Morozov, M.M. van Wijk, A. Fasolino, M.I. Katsnelson, K. Watanabe, T. Taniguchi, A.K. Geim, A. Mishchenko, K.S. Novoselov, Nat. Commun. 7, 10800 (2016)

    Article  CAS  Google Scholar 

  42. E.Y. Andrei, D.K. Efetov, P. Jarillo-Herrero, A.H. MacDonald, K.F. Mak, T. Senthil, E. Tutuc, A. Yazdani, A.F. Young, Nat. Rev. Mater. 6, 201 (2021)

    Article  CAS  Google Scholar 

  43. Z. Liu, F. Liu, and Y. S. Wu, Chinese Phys. B (2014).

  44. S. Deng, A. Simon, and J. Köhler, J. Solid State Chem. (2003).

  45. M. Kang, S. Fang, L. Ye, H. C. Po, J. Denlinger, C. Jozwiak, A. Bostwick, E. Rotenberg, E. Kaxiras, J. G. Checkelsky, and R. Comin, Nat. Commun. (2020).

  46. S. Miyahara, S. Kusuta, and N. Furukawa, Phys. C Supercond. Its Appl. (2007).

  47. S. Zhang, H. H. Hung, and C. Wu, Phys. Rev. A - At. Mol. Opt. Phys. (2010).

  48. W. Wang, B. Wang, Z. Gao, G. Tang, W. Lei, X. Zheng, H. Li, X. Ming, and C. Autieri, Phys. Rev. B (2020).

  49. W. H. Han, S. Kim, I. H. Lee, and K. J. Chang, ArXiv (2019).

  50. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (2018).

  51. Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K. Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. (2019).

  52. Y. Cao, J. Y. Luo, V. Fatemi, S. Fang, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Phys. Rev. Lett. (2016).

  53. E. Laksono, J. N. Leaw, A. Reaves, M. Singh, X. Wang, S. Adam, and X. Gu, Solid State Commun. (2018).

  54. M. H. Naik and M. Jain, Phys. Rev. Lett. (2018).

  55. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  CAS  Google Scholar 

  56. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447 (2012)

    Article  Google Scholar 

  57. R. Debbarma, S.K. Behura, Y. Wen, S. Che, V. Berry, Nanoscale 10, 20218 (2018)

    Article  CAS  Google Scholar 

  58. S. Behura, K.C. Chang, Y. Wen, R. Debbarma, P. Nguyen, S. Che, S. Deng, M.R. Seacrist, V. Berry, I.E.E.E. Nanotechnol, Mag. 11, 33 (2017)

    Google Scholar 

  59. L. Yuan, B. Zheng, J. Kunstmann, T. Brumme, A. B. Kuc, C. Ma, S. Deng, D. Blach, A. Pan, and L. Huang, Nat. Mater. (2020).

  60. J. Choi, M. Florian, A. Steinhoff, D. Erben, K. Tran, L. Sun, J. Quan, R. Claassen, S. Majumder, J. A. Hollingsworth, T. Taniguchi, K. Watanabe, K. Ueno, A. Singh, G. Moody, F. Jahnke, and X. Li, ArXiv (2020).

  61. K. Tran, J. Choi, and A. Singh, ArXiv (2020).

  62. F. Wu, T. Lovorn, and A. H. Macdonald, Phys. Rev. Lett. (2017).

  63. A. Tartakovskii, Nat. Rev. Phys. (2020).

  64. K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D.A. Sanchez, J. Quan, A. Singh, J. Embley, A. Zepeda, M. Campbell, T. Autry, T. Taniguchi, K. Watanabe, N. Lu, S.K. Banerjee, K.L. Silverman, S. Kim, E. Tutuc, L. Yang, A.H. MacDonald, X. Li, Nature 567, 71 (2019)

    Article  CAS  Google Scholar 

  65. K.L. Seyler, P. Rivera, H. Yu, N.P. Wilson, E.L. Ray, D.G. Mandrus, J. Yan, W. Yao, X. Xu, Nature 567, 66 (2019)

    Article  CAS  Google Scholar 

  66. Xu, X.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and Pseudospins in Layered Transition Metal Dichalcogenides. Nature Physics, 10, 343–350 (2014). https://doi.org/10.1038/nphys2942

  67. E.M. Alexeev, D.A. Ruiz-Tijerina, M. Danovich, M.J. Hamer, D.J. Terry, P.K. Nayak, S. Ahn, S. Pak, J. Lee, J.I. Sohn, M.R. Molas, M. Koperski, K. Watanabe, T. Taniguchi, K.S. Novoselov, R.V. Gorbachev, H.S. Shin, V.I. Fal’ko, A.I. Tartakovskii, Nature 567, 81 (2019)

    Article  CAS  Google Scholar 

  68. Ni, G. X.; McLeod, A. S.; Sun, Z.; Wang, L.; Xiong, L.; Post, K. W.; Sunku, S. S.; Jiang, B. Y.; Hone, J.; Dean, C. R.; Fogler, M. M.; Basov, D. N. Fundamental Limits to Graphene Plasmonics. Nature, 557, 530–533 (2018). https://doi.org/10.1038/s41586-018-0136-9

  69. Dai, S.; Fang, W.; Rivera, N.; Stehle, Y.; Jiang, B. Y.; Shen, J.; Tay, R. Y.; Ciccarino, C. J.; Ma, Q.; Rodan-Legrain, D.; Jarillo-Herrero, P.; Teo, E. H. T.; Fogler, M. M.; Narang, P.; Kong, J.; Basov, D. N. Phonon Polaritons in Monolayers of Hexagonal Boron Nitride. Adv. Mater., 31(37) (2019). https://doi.org/10.1002/adma.201806603

  70. Li, P.; Lewin, M.; Kretinin, A. V.; Caldwell, J. D.; Novoselov, K. S.; Taniguchi, T.; Watanabe, K.; Gaussmann, F.; Taubner, T. Hyperbolic Phonon-Polaritons in Boron Nitride for near-Field Optical Imaging and Focusing. Nature Communications, 6, Article number: 7507 (2015). https://doi.org/10.1038/ncomms8507

  71. Dai, S.; Fei, Z.; Ma, Q.; Rodin, A. S.; Wagner, M.; McLeod, A. S.; Liu, M. K.; Gannett, W.; Regan, W.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Dominguez, G.; Castro Neto, A. H.; Zettl, A.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N. Tunable Phonon Polaritons in Atomically Thin van Der Waals Crystals of Boron Nitride. Science, 343, (6175), 1125–1129 (2014). https://doi.org/10.1126/science.1246833

  72. Giles, A. J.; Dai, S.; Vurgaftman, I.; Hoffman, T.; Liu, S.; Lindsay, L.; Ellis, C. T.; Assefa, N.; Chatzakis, I.; Reinecke, T. L.; Tischler, J. G.; Fogler, M. M.; Edgar, J. H.; Basov, D. N.; Caldwell, J. D. Ultralow-Loss Polaritons in Isotopically Pure Boron Nitride. Nature Materials, 17, 134–139 (2018). https://doi.org/10.1038/NMAT5047

  73. Jia, Y.; Zhao, H.; Guo, Q.; Wang, X.; Wang, H.; Xia, F. Tunable Plasmon-Phonon Polaritons in Layered Graphene-Hexagonal Boron Nitride Heterostructures. ACS Photonics, 2(7), 907–912 (2015). https://doi.org/10.1021/acsphotonics.5b00099

  74. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I. Valley-Addressable Polaritons in Atomically Thin Semiconductors. Nature Photonics, 11, 497–501 (2017). https://doi.org/10.1038/nphoton.2017.125

  75. Gartstein, Y. N.; Li, X.; Zhang, C. Exciton Polaritons in Transition-Metal Dichalcogenides and Their Direct Excitation via Energy Transfer. Phys. Rev. B, 92, 075445 (2015). https://doi.org/10.1103/PhysRevB.92.075445

  76. Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Catanzaro, A.; Withers, F.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S.; Krizhanovskii, D. N.; Tartakovskii, A. I. Valley Coherent Exciton-Polaritons in a Monolayer Semiconductor. Nature Communications, 9, Article number: 4797 (2018). https://doi.org/10.1038/s41467-018-07249-z

  77. Hu, F.; Fei, Z. Recent Progress on Exciton Polaritons in Layered Transition-Metal Dichalcogenides. Advanced Optical Materials, 8(5) (2020). https://doi.org/10.1002/adom.201901003

  78. Epstein, I.; Chaves, A. J.; Rhodes, D. A.; Frank, B.; Watanabe, K.; Taniguchi, T.; Giessen, H.; Hone, J. C.; Peres, N. M. R.; Koppens, F. H. L. Highly Confined In-Plane Propagating Exciton-Polaritons on Monolayer Semiconductors. 2D Materials, 7(3), 035031 (2020). https://doi.org/10.1088/2053-1583/ab8dd4

  79. Sunku, S. S.; Ni, G. X.; Jiang, B. Y.; Yoo, H.; Sternbach, A.; McLeod, A. S.; Stauber, T.; Xiong, L.; Taniguchi, T.; Watanabe, K.; Kim, P.; Fogler, M. M.; Basov, D. N. Photonic Crystals for Nano-Light in Moiré Graphene Superlattices. Science, 362(6419), 1153–1156 (2018). https://doi.org/10.1126/science.aau5144

  80. Hu, F.; Das, S. R.; Luan, Y.; Chung, T. F.; Chen, Y. P.; Fei, Z. Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene. Phys. Rev. Lett., 119, 247402 (2017). https://doi.org/10.1103/PhysRevLett.119.247402

  81. Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro-Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D.; Yao, W.; Jarillo-Herrero, P.; Xu, X. Electrical Control of 2D Magnetism in Bilayer CrI3. Nature Nanotechnology, 13, 544–548 (2018). https://doi.org/10.1038/s41565-018-0121-3

  82. Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoǧlu, A.; Giannini, E.; Morpurgo, A. F. Very Large Tunneling Magnetoresistance in Layered Magnetic Semiconductor CrI3. Nature Communications, 9, Article number: 2516 (2018). https://doi.org/10.1038/s41467-018-04953-8

  83. McGuire, M. A.; Dixit, H.; Cooper, V. R.; Sales, B. C. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator Cri3. Chem. Mater., 27(2), 612–620 (2015). https://doi.org/10.1021/cm504242t

  84. Ghazaryan, D.; Greenaway, M. T.; Wang, Z.; Guarochico-Moreira, V. H.; Vera-Marun, I. J.; Yin, J.; Liao, Y.; Morozov, S. V.; Kristanovski, O.; Lichtenstein, A. I.; Katsnelson, M. I.; Withers, F.; Mishchenko, A.; Eaves, L.; Geim, A. K.; Novoselov, K. S.; Misra, A. Magnon- Assisted Tunnelling in van Der Waals Heterostructures Based on CrBr3. Nature Electronics, 1, 344–349 (2018). https://doi.org/10.1038/s41928-018-0087-z

  85. K. Sreenivas, Bull. Mater. Sci. 15, 287 (1992)

    Article  Google Scholar 

  86. S. Oh, H. Hwang, I.K. Yoo, APL Mater. 7, 91109 (2019)

    Article  Google Scholar 

  87. K.T. Butler, J.M. Frost, A. Walsh, Energy Environ. Sci. 8, 838 (2015)

    Article  CAS  Google Scholar 

  88. M. Osada, T. Sasaki, APL Mater. 7, 120902 (2019)

    Article  Google Scholar 

  89. Z. Guan, H. Hu, X. Shen, P. Xiang, N. Zhong, J. Chu, C. Duan, Adv. Electron. Mater. 6, 1900818 (2020)

    Article  CAS  Google Scholar 

  90. C. Cui, F. Xue, W.-J. Hu, L.-J. Li, Npj 2D Mater. Appl. 2, 18 (2018)

    Google Scholar 

  91. Z. Zheng, Q. Ma, Z. Bi, S. de la Barrera, M.-H. Liu, N. Mao, Y. Zhang, N. Kiper, K. Watanabe, T. Taniguchi, J. Kong, W.A. Tisdale, R. Ashoori, N. Gedik, L. Fu, S.-Y. Xu, P. Jarillo-Herrero, Nature 588, 71 (2020)

    Article  CAS  Google Scholar 

  92. Yasuda, K.; Wang, X.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Stacking-Engineered Ferroelectricity in Bilayer Boron Nitride. Science, 372(6549), 1458-1462 (2021). https://doi.org/10.1126/science.abd3230

  93. Editorial: 2D Magnetism Gets Hot. Nature Nanotechnology, 13, 269 (2018). https://doi.org/10.1038/s41565-018-0128-9

  94. M. Gibertini, M. Koperski, A.F. Morpurgo, K.S. Novoselov, Nat. Nanotechnol. 14, 408 (2019)

    Article  CAS  Google Scholar 

  95. K.F. Mak, J. Shan, D.C. Ralph, Nat. Rev. Phys. 1, 646 (2019)

    Article  Google Scholar 

  96. M. Galbiati, V. Zatko, F. Godel, P. Hirschauer, A. Vecchiola, K. Bouzehouane, S. Collin, B. Servet, A. Cantarero, F. Petroff, M.-B. Martin, B. Dlubak, P. Seneor, A.C.S. Appl, Electron. Mater. 2, 3508 (2020)

    CAS  Google Scholar 

  97. J. Su, M. Wang, G. Liu, H. Li, J. Han, T. Zhai, Adv. Sci. 7, 2001722 (2020)

    Article  CAS  Google Scholar 

  98. A. Nimbalkar, H. Kim, Nano-Micro Lett. 12, 126 (2020)

    Article  CAS  Google Scholar 

  99. D.S. Schulman, A.J. Arnold, S. Das, Chem. Soc. Rev. 47, 3037 (2018)

    Article  CAS  Google Scholar 

  100. A. Allain, J. Kang, K. Banerjee, A. Kis, Nat. Mater. 14, 1195 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKB acknowledges the support from the Department of Chemistry and Physics and the Department of Mathematics and Computer Science at the University of Arkansas at Pine Bluff. NRP acknowledges the funding support from NSF-PREM through NSF DMR # 1826886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Behura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behura, S.K., Miranda, A., Nayak, S. et al. Moiré physics in twisted van der Waals heterostructures of 2D materials. emergent mater. 4, 813–826 (2021). https://doi.org/10.1007/s42247-021-00270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00270-x

Keywords

Navigation