Skip to main content

Life cycle inventory and performance analysis of phase change materials for thermal energy storages

Abstract

Solar energy is a renewable energy that requires a storage medium for effective usage. Phase change materials (PCMs) successfully store thermal energy from solar energy. The material-level life cycle assessment (LCA) plays an important role in studying the ecological impact of PCMs. The life cycle inventory (LCI) analysis provides information regarding the material and energy requirements and economy of PCMs. This work presents an estimated LCA and LCI values in order to reveal all the mentioned effects of PCMs on storing thermal energy generated by concentrated solar thermal power plants. The goal of this study was to provide guidance for PCM system design based on a matrix that considers the performance, costs, and environmental impact. The ecoinvent global database (version 3) was used for the life cycle inventory analysis. For this study, PCMs were selected based on physical and chemical properties as well as state and melting temperatures (300–500 °C) that are suitable for charging and discharging a large amount of thermal energy. The performance of PCMs was determined based on their thermal effusivity. Results indicate that compared to other PCMs, sodium nitrate (100%) used less heat energy, but when comparing the amount of electricity usage for PCM compounds, potassium nitrate (65.31%) + potassium carbonate (34.69%) used less electricity. From the emissions data for PCMs from raw materials to factory gate (cradle-to-gate), Na2CO3 produced the lowest emissions to air, although harmful emissions to water. The performance of PCM mixtures was better, with thermal conductivity almost 3.5 times higher than that of individual PCMs. However, the cost of PCM mixtures was three times higher than that of individual PCMs. This comprehensive compilation of PCM data can be very helpful in the selection of a suitable PCM while offering a fine balance between cost and performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

kWh:

Kilowatt-hour

LCA:

Life cycle assessment

LCI:

Life cycle inventory

MJ:

Megajoule

PCM:

Phase change material

TES:

Thermal energy storage

τ:

Density fraction

ρbi :

Density of binary compound PCM

ρA :

Density of compound A

ρB :

Density of compound B

ρ:

Density of PCM

Cp :

Specific heat capacity of PCM

λbi :

Thermal conductivity of binary compound PCM

λA :

Thermal conductivity of compound A

λB :

Thermal conductivity of compound B

k:

Thermal conductivity of PCM

e:

Thermal effusivity of PCM

WA :

Weight of compound A

WB :

Weight of compound B

∆Hm :

Heat of fusion

References

  1. HJ Althaus F Dinkel C Stettler F Werner 2007. Life cycle inventories of renewable materials. Final report ecoinvent data v2.0 No. 21. EMPA, Final report ecoinvent data Dübendorf: EMPA, Swiss Centre for Life Cycle Inventories.

  2. E. Asmatulu, J. Twomey, M. Overcash, Life cycle and nano-products: end-of-life assessment. J. Nanopart. Res 14(3), 720 (2012). https://doi.org/10.1007/s11051-012-0720-0

    Article  Google Scholar 

  3. E. Asmatulu, B. Subeshan, J. Twomey, M. Overcash, Increasing the lifetime of products by nanomaterial inclusions—life cycle energy implications. Int. J. LCA 25(9), 1783–1789 (2020). https://doi.org/10.1007/s11367-020-01794-w

    Article  Google Scholar 

  4. Athena IE, Athena Impact Estimator for Buildings, Athena Sustainable Mate-rials Institute, 2014, http://www.athenasmi.org/our-software-data/impact-estimator/.

  5. A. Atmaca, N. Atmaca, Energy efficiency and engineering applications, in conjunction with the International Energy and Engineering Conference 2016 (Oct 13–14, 2016). Energy. Ecol. Environ 3, 1–4 (2018). https://doi.org/10.1007/s40974-018-0082-2

    Article  Google Scholar 

  6. R. Azari, Integrated energy and environmental life cycle assessment of office building envelopes. Energy Build 82, 156–162 (2014). https://doi.org/10.1016/j.enbuild.2014.06.041

    Article  Google Scholar 

  7. C-Therm Technologies Ltd. (2019). Available [WWW Document], n.d. https://ctherm.com/resources/blog/using_thermal_effusivity_to_investigate_the_thermal_performance_of_pcms_and/.

  8. LF Cabeza, A Castell, and G Pérez. 2013. Life cycle assessment (LCA) of phase change materials (PCMs) used in buildings. Eco-Efficient Constr. Build. Mater. Life Cycle Assess. (LCA), Eco-Labelling Case Stud. 287–310. https://doi.org/10.1533/9780857097729.2.287.

  9. J. Chen, W. Xu, H. Zuo, X. Wu, E. Jiaqiang, T. Wang, F. Zhang, N. Lu, System development and environmental performance analysis of a solar-driven supercritical water gasification pilot plant for hydrogen production using life cycle assessment approach. Energy Convers. Manag 184, 60–73 (2019). https://doi.org/10.1016/j.enconman.2019.01.041

    Article  CAS  Google Scholar 

  10. P.K. Choudhury, D.C. Baruah, Solar air heater for residential space heating. Energy. Ecol. Environ 2, 387–403 (2017). https://doi.org/10.1007/s40974-017-0077-4

    Article  Google Scholar 

  11. A.L. Cottrill, A.T. Liu, Y. Kunai, V.B. Koman, A. Kaplan, S.G. Mahajan, P. Liu, A.R. Toland, M.S. Strano, Ultra-high thermal effusivity materials for resonant ambient thermal energy harvesting. Nat. Commun 9, 1–11 (2018). https://doi.org/10.1038/s41467-018-03029-x

    Article  CAS  Google Scholar 

  12. F. Desai, A. Atayo, J.S. Prasad, P. Muthukumar, M. Rahman, E. Asmatulu, Experimental studies on endothermic reversible reaction of salts for cooling. Heat Transf. Eng 42, 1–13 (2020). https://doi.org/10.1080/01457632.2020.1777002

    Article  CAS  Google Scholar 

  13. FJ Desai A Atayo M Palanisamy MM Rahman, and E Asmatulu, 2019. Experimental studies on endothermic reversible reaction of salts for cooling, International Conference on Polygeneration, p. 2.

  14. Ghosh, S.K., 2020. Urban Mining and sustainable waste management, urban mining and sustainable waste management. https://doi.org/10.1007/978-981-15-0532-4.

  15. A. Gil, M. Medrano, I. Martorell, A. Lázaro, P. Dolado, B. Zalba, L.F. Cabeza, State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renew. Sustain. Energy Rev 14, 31–55 (2010). https://doi.org/10.1016/j.rser.2009.07.035

    Article  CAS  Google Scholar 

  16. J. Gong, S.B. Darling, F. You, Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy Environ. Sci 8, 1953–1968 (2015). https://doi.org/10.1039/c5ee00615e

    Article  CAS  Google Scholar 

  17. Y. Gu, G. Zhou, Y. Wu, M. Xu, T. Chang, Y. Gong, T. Zuo, Environmental performance analysis on resource multiple-life-cycle recycling system: Evidence from waste pet bottles in China. Resour. Conserv. Recycl 158, 104821 (2020). https://doi.org/10.1016/j.resconrec.2020.104821

    Article  Google Scholar 

  18. N.S. Humam, Y. Sato, M. Takahashi, S. Kanazawa, N. Tsumori, P. Regreny, M. Gendry, T. Saiki, Redshifted and blueshifted photoluminescence emission of InAs/InP quantum dots upon amorphization of phase change material. Opt. Express 22, 14830–14839 (2014). https://doi.org/10.1039/c5ee00615e

    Article  Google Scholar 

  19. D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew. Chem. Int. Ed 53, 3780–3795 (2014). https://doi.org/10.1002/anie.201305201

    Article  CAS  Google Scholar 

  20. S. Jegadheeswaran, S.D. Pohekar, Performance enhancement in latent heat thermal storage system: a review. Renew. Sustain. Energy Rev 13, 2225–2244 (2009). https://doi.org/10.1016/j.rser.2009.06.024

    Article  CAS  Google Scholar 

  21. E Johansson, and F Norrman, 2019. Life cycle analysis on phase change materials for thermal energy storage. KTH School of Industrial Engineering and Management.

  22. HU Khan, TK Aldoss, MM Rahman, 2018. Layout of phase change materials in a thermal energy storage system. InASME 2018 International Mechanical Engineering Congress and Exposition 2018 Nov 9. American Society of Mechanical Engineers Digital Collection.https://doi.org/10.1115/IMECE2018-88636

  23. Knovel Corporation, 2019. Knovel database [WWW Document]. Elsevier. URL https://app.knovel.com/web/index.v (accessed June 6, 2020).

  24. S. Koohi-Fayegh, M.A. Rosen, Optimization of seasonal storage for community-level energy systems: status and needs. Energy. Ecol. Environ 2, 169–181 (2017). https://doi.org/10.1007/s40974-017-0051-1

    Article  Google Scholar 

  25. E. Kyriaki, C. Konstantinidou, E. Giama, A.M. Papadopoulos, Life cycle analysis (LCA) and life cycle cost analysis (LCCA) of phase change materials (PCM) for thermal applications: a review. Int. J. Energy Res 42, 3068–3077 (2018). https://doi.org/10.1002/er.3945

    Article  CAS  Google Scholar 

  26. M.L. López-Moreno, G. de la Rosa, J.A. Hernández-Viezcas, H. Castillo-Michel, C.E. Botez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (glycine max) plants. Environ. Sci. Technol 44, 7315–7320 (2010). https://doi.org/10.1021/es903891g

    Article  CAS  Google Scholar 

  27. M.H. Mahfuz, M.R. Anisur, M.A. Kibria, R. Saidur, I.H.S.C. Metselaar, Performance investigation of thermal energy storage system with phase change material (PCM) for solar water heating application. Int. Commun. Heat Mass Transf 57, 132–139 (2014). https://doi.org/10.1016/j.icheatmasstransfer.2014.07.022

    Article  Google Scholar 

  28. M Mapston, and C Westbrook, 2010. Prefabricated building units and modern methods of construction (MMC). Mater. Energy Effic. Therm. Comf. Build. 427–454. https://doi.org/10.1533/9781845699277.2.427.

  29. L. Miró, J. Gasia, L.F. Cabeza, Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review. Appl. Energy 179, 284–301 (2016). https://doi.org/10.1016/j.apenergy.2016.06.147

    Article  CAS  Google Scholar 

  30. K. Nakano, M. Hirao, Collaborative activity with business partners for improvement of product environmental performance using LCA. J. Clean. Prod 19(11), 1189–1197 (2011). https://doi.org/10.1016/j.jclepro.2011.03.007

    Article  Google Scholar 

  31. H. Nazir, M. Batool, F.J. Bolivar Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, Inamuddin, A.M. Kannan, Recent developments in phase change materials for energy storage applications: a review. Int. J. Heat Mass Transf 129, 491–523 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  CAS  Google Scholar 

  32. B. Nienborg, S. Gschwander, G. Munz, D. Fröhlich, T. Helling, R. Horn, H. Weinläder, F. Klinker, P. Schossig, Life cycle assessment of thermal energy storage materials and components. Energy Procedia 155, 111–120 (2018). https://doi.org/10.1016/j.egypro.2018.11.063

    Article  Google Scholar 

  33. H. Niyas, P. Muthukumar, Performance analysis of latent heat storage systems. Int. J. Sci. Eng. Res 4, 2229–5518 (2013)

    Google Scholar 

  34. E. Oró, A. Gil, A. de Gracia, D. Boer, L.F. Cabeza, Comparative life cycle assessment of thermal energy storage systems for solar power plants. Renew. Energy 44, 166–173 (2012). https://doi.org/10.1016/j.renene.2012.01.008

    Article  CAS  Google Scholar 

  35. T Pajula, K Behm, S Vatanen, and E Saarivuori, 2017. Managing the life cycle to reduce environmental impacts. In Dynamics of Long-Life Assets (pp. 93–113). Springer, Cham. https://doi.org/10.1007/978-3-319-45438-2.

  36. P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rougé, M. Cabassud, P. Cognet, A review on high temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev 32, 591–610 (2014). https://doi.org/10.1016/j.rser.2013.12.014

    Article  CAS  Google Scholar 

  37. J. Pereira da Cunha, P. Eames, Thermal energy storage for low and medium temperature applications using phase change materials: a review. Appl. Energy 177, 227–238 (2016). https://doi.org/10.1016/j.apenergy.2016.05.097

    Article  CAS  Google Scholar 

  38. T. Rehman, H.M. Ali, M.M. Janjua, U. Sajjad, W.M. Yan, A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Transf 135(649), 673 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.001

    Article  CAS  Google Scholar 

  39. M.A. Rosen, S. Koohi-Fayegh, The prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems. Energy. Ecol. Environ 1, 10–29 (2016). https://doi.org/10.1007/s40974-016-0005-z

    Article  Google Scholar 

  40. S. Seddegh, X. Wang, A.D. Henderson, Z. Xing, Solar domestic hot water systems using latent heat energy storage medium: a review. Renew. Sustain. Energy Rev 49, 517–533 (2015). https://doi.org/10.1016/j.rser.2015.04.147

    Article  Google Scholar 

  41. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev 13, 318–345 (2009). https://doi.org/10.1016/j.rser.2007.10.005

    Article  CAS  Google Scholar 

  42. J. Sunku Prasad, P. Muthukumar, F. Desai, D.N. Basu, M.M. Rahman, A critical review of high-temperature reversible thermochemical energy storage systems. Appl. Energy 254, 113733 (2019). https://doi.org/10.1016/j.apenergy.2019.113733

    Article  CAS  Google Scholar 

  43. R. Velraj, R.V. Seeniraj, B. Hafner, C. Faber, K. Schwarzer, Heat transfer enhancement in a latent heat storage system. Paper presented at the ISES Solar World Congress, Taejon, South Korea, August 24–29, 1997.1. Sol. Energy 65, 171–180 (1999). https://doi.org/10.1016/S0038-092X(98)00128-5

    Article  CAS  Google Scholar 

  44. G. Wernet, C. Bauer, B. Steubing, J. Reinhard, E. Moreno-Ruiz, B. Weidema, The ecoinvent database version 3 (part I): overview and methodology. Int J LCA 21(9), 1218–1230 (2016)

    Article  Google Scholar 

  45. DF Williams, LM Toth, and KT Clarno, 2006. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (AHTR), Ornl/Tm-2006/69.

  46. H. Zhang, J. Baeyens, G. Cáceres, J. Degrève, Y. Lv, Thermal energy storage: recent developments and practical aspects. Prog. Energy Combust. Sci 53, 1–40 (2016). https://doi.org/10.1016/j.pecs.2015.10.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eylem Asmatulu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

1. PCMs were selected based on physical, chemical and thermal properties.

2. The performance of PCMs was determined based on their thermal effusivity.

3. LCI of PCMs was performed using the cradle-to-gate approach.

4. The material-level LCA is important for understanding environmental impact of PCMs.

4. The material-level LCA is important for understanding environmental impact of PCMs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madeswaran, N., Desai, F.J. & Asmatulu, E. Life cycle inventory and performance analysis of phase change materials for thermal energy storages. emergent mater. 4, 1697–1709 (2021). https://doi.org/10.1007/s42247-021-00235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00235-0

Keywords

  • Life cycle analysis
  • Life cycle inventory analysis
  • Phase change material
  • Carbon footprint
  • Emissions