Skip to main content

Advertisement

Log in

Silk cocoon derived carbon and sulfur nanosheets as cathode material for Li-S battery application

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

The lithium-sulfur cathode material is one of the potential electrode materials used in the Li-sulfur battery due to its high capacity. A rapid heating process was used to synthesis the sulfur nanosheets. Hierarchical porous carbon materials were prepared by carbonization of silk cocoon (sC). The sulfur nanosheets and carbonized silk cocoon nanocomposite were prepared by simple melt-diffusion method. The morphology and anchoring of sulfur nanosheets on carbonized silk cocoon were confirmed by SEM and TEM studies. The Raman spectroscopy measurement was employed to verify the formation of graphitic carbon nanostructure. The electrochemical performance of sulfur and carbonized silk cocoon (S-sC) nanocomposite sample showed 1231 mAh/g discharge capacity at 0.05 C. The capacity retention of the sample was about 997 mAh/g after 50 cycles. This nanocomposite material plays a vital role in improving electrochemical performance. The sulfur nanosheets anchored on silk fiber will be an ideal cathode candidate material for lithium-sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Chen, C. Wang, Y. Dai, S. Qiu, J. Yang, W. Lu, L. Chen, Rational design of cathode structure for high rate performance lithium-sulfur batteries. Nano Lett. 15, 5443–5448 (2015). https://doi.org/10.1021/acs.nanolett.5b01837

    Article  CAS  Google Scholar 

  2. S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013). https://doi.org/10.1016/j.jpowsour.2012.12.102

    Article  CAS  Google Scholar 

  3. Article R (2012) Li–O2 and Li–S batteries with high energy storage. 11:19–30. https://doi.org/10.1038/NMAT3191

  4. Y. Yin, S. Xin, Y. Guo, L. Wan, Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angewandte, 13186–13200 (2013). https://doi.org/10.1002/anie.201304762

  5. Y. Liu, M. Yao, L. Zhang, Z. Niu, Large-scale fabrication of reduced graphene oxide-sulfur composite films for flexible lithium-sulfur batteries. J Energy Chem. 38, 199–206 (2019). https://doi.org/10.1016/j.jechem.2019.03.034

    Article  Google Scholar 

  6. K. Chen, J. Cao, Q. Lu, Q. Wang, M. Yao, M. Han, Z. Niu, J. Chen, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nano Res. 11, 1345–1357 (2018). https://doi.org/10.1007/s12274-017-1749-2

    Article  CAS  Google Scholar 

  7. X. Yang, X Li, K Adair, et al, Structural Design of Lithium–Sulfur Batteries: from Fundamental Research to Practical Application. Springer Singapore (2018)

  8. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  Google Scholar 

  9. S. Dutta, A. Bhaumik, K.C.-W. Wu, Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014). https://doi.org/10.1039/C4EE01075B

    Article  CAS  Google Scholar 

  10. S. Lu, Y. Chen, J. Zhou, et al., A sheet-like carbon matrix hosted sulfur as cathode for batteries. Nat Publ Gr, 1–10 (2016). https://doi.org/10.1038/srep20445

  11. M. Xiang, Y. Wang, J. Wu, Y. Guo, H. Wu, Y. Zhang, H. Liu, Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium-sulfur batteries. Electrochim. Acta 227, 7–16 (2017). https://doi.org/10.1016/j.electacta.2016.11.139

    Article  CAS  Google Scholar 

  12. Y. Meng, Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium–sulfur battery applications. ACS Appl. Mater. Interfaces 6, 13174–13182 (2014). https://doi.org/10.1021/am503069j

    Article  CAS  Google Scholar 

  13. R. Fang, S. Zhao, S. Pei, X. Qian, P.X. Hou, H.M. Cheng, C. Liu, F. Li, Toward more reliable lithium-sulfur batteries: an all-graphene cathode structure. ACS Nano 10, 8676–8682 (2016). https://doi.org/10.1021/acsnano.6b04019

    Article  CAS  Google Scholar 

  14. M.-Q. Zhao, M. Sedran, Z. Ling, et al., Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC. Angew. Chem. Int. Ed. Eng. 54, 4810–4814 (2015). https://doi.org/10.1002/anie.201500110

    Article  CAS  Google Scholar 

  15. G. Li, J. Sun, W. Hou, S. Jiang, Y. Huang, J. Geng, Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium–sulfur batteries. Nat. Commun. 7, 10601 (2016). https://doi.org/10.1038/ncomms10601

    Article  CAS  Google Scholar 

  16. G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 6, 7760 (2015). https://doi.org/10.1038/ncomms8760

    Article  CAS  Google Scholar 

  17. S.Y. Cho, Y.S. Yun, S. Lee, D. Jang, K.Y. Park, J.K. Kim, B.H. Kim, K. Kang, D.L. Kaplan, H.J. Jin, Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nat. Commun. 6, 7145 (2015). https://doi.org/10.1038/ncomms8145

    Article  Google Scholar 

  18. Y. Zhang, X. Xia, X. Wang, C.D. Gu, J.P. Tu, Graphene oxide modified metallic lithium electrode and its electrochemical performances in lithium–sulfur full batteries and symmetric lithium–metal coin cells. RSC Adv. 6, 66161–66168 (2016). https://doi.org/10.1039/C6RA13039A

    Article  CAS  Google Scholar 

  19. X.-B. Yang, W. Zhu, K. Qin, H.-Y. Wang, Preparation of lamellar carbon matrix for sulfur as cathode material of lithium-sulfur batteries. Electrochim. Acta 143, 374–382 (2014). https://doi.org/10.1016/j.electacta.2014.07.080

    Article  CAS  Google Scholar 

  20. M. Chen, S. Jiang, C. Huang, X. Wang, S. Cai, K. Xiang, Y. Zhang, J. Xue, Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium-sulfur batteries. ChemSusChem 10, 1803–1812 (2017). https://doi.org/10.1002/cssc.201700050

    Article  CAS  Google Scholar 

  21. R. Demir-cakan, M. Morcrette, F. Nouar, et al., Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011)

    Article  CAS  Google Scholar 

  22. R. Chulliyote, H. Hareendrakrishnakumar, M. Raja, J.M. Gladis, A.M. Stephan, Enhanced cyclability using a polyindole modified cathode material for lithium sulphur batteries. Sustain Energy Fuels 1, 1774–1781 (2017). https://doi.org/10.1039/C7SE00210F

    Article  CAS  Google Scholar 

  23. Y. Peng, Y. Zhang, J. Huang, Y. Wang, H. Li, B.J. Hwang, J. Zhao, Nitrogen and oxygen dual-doped hollow carbon nanospheres derived from catechol/polyamine as sulfur hosts for advanced lithium sulfur batteries. Carbon N Y 124, 23–33 (2017). https://doi.org/10.1016/j.carbon.2017.08.035

    Article  CAS  Google Scholar 

  24. J. Sun, L. Xiao, S. Jiang, G. Li, Y. Huang, J. Geng, Fluorine-doped SnO2@graphene porous composite for high capacity lithium-ion batteries. Chem. Mater. 27, 4594–4603 (2015). https://doi.org/10.1021/acs.chemmater.5b00885

    Article  CAS  Google Scholar 

  25. E.H. Mohan, S. Anandan, B.V.A. Rao, T.N. Rao Neem leaf-derived micro and mesoporous carbon as an efficient polysulfide inhibitor for sulfur cathode in a Li-S battery. 62–64. https://doi.org/10.1246/cl.180726 (2019)

  26. M. Xue, C. Chen, Y. Tan, Z. Ren, B. Li, C. Zhang, Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery. J. Mater. Sci. 53, –11077 (2018). https://doi.org/10.1007/s10853-018-2370-9

  27. L. Zhang, Y. Wang, B. Peng, W. Yu, H. Wang, T. Wang, B. Deng, L. Chai, K. Zhang, J. Wang, Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chem. 16, 3926–3934 (2014). https://doi.org/10.1039/c4gc00761a

    Article  CAS  Google Scholar 

  28. Z. Deng, Z. Zhang, Y. Lai, J. Liu, J. Li, Y. Liu, Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J. Electrochem. Soc. 160, A553–A558 (2013). https://doi.org/10.1149/2.026304jes

    Article  CAS  Google Scholar 

  29. B. Ding, L. Shen, G. Xu, P. Nie, X. Zhang, Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium–sulfur battery. Electrochim. Acta 107, 78–84 (2013). https://doi.org/10.1016/j.electacta.2013.06.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the partial support from the VGST, Department of IT, BT, Government of Karnataka with Grant No. VGST/CESEM/2012-13/281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Rangappa.

Ethics declarations

Competing interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shastri, M., Sriramoju, J.B., Muniyappa, M. et al. Silk cocoon derived carbon and sulfur nanosheets as cathode material for Li-S battery application. emergent mater. 4, 1329–1337 (2021). https://doi.org/10.1007/s42247-021-00218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00218-1

Keywords

Navigation