Skip to main content
Log in

Recent advances in aggregation-induced emission of mechanochromic luminescent organic materials

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Mechanochromic luminogenic materials (MCL) can reversibly modify their luminescence properties when exposed to external mechanical stimuli. This smart effect could emerge from physico-chemical characteristics varying in a wider scale, ranging from the transformation of molecular domains to the rearrangement of chemical bonds. MCL has become the fast-emerging group of materials owing to their great application potential as stress sensors, smart switches, optical memories, and optoelectronic and display devices. In recent years, a lot of work has been carried out on these materials leading to the synthesis of various MCL materials. This review discusses various organic MCL materials and their underlying luminogenic mechanisms. Furthermore, a detailed literature review of how different classes of luminescent organic materials respond to mechanical forces has been provided. In particular, the most common chromophores used in such systems including triphenylamine, cyanoethylene, pyrene, tetraphenylethene, and others are described here with an emphasis on their industrial applications. Presumably, this review will provide useful insights into the characteristics and applications of MCL materials to researchers working in this field in the academic community and industry.

TOC graphic

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48

Similar content being viewed by others

References

  1. X. Chen, Z. Yang, W. Li, Z. Mao, J. Zhao, Y. Zhang, Y.-C. Wu, S. Jiao, Y. Liu, Z. Chi, Nondoped Red Fluorophores with Hybridized Local and Charge-Transfer State for High-Performance Fluorescent White Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 11(42), 39026–39034 (2019). https://doi.org/10.1021/acsami.9b15278

    Article  CAS  Google Scholar 

  2. M. Semeniuk, Z. Yi, V. Poursorkhabi, J. Tjong, S. Jaffer, Z.-H. Lu, M. Sain, Future Perspectives and Review on Organic Carbon Dots in Electronic Applications. ACS Nano 13(6), 6224–6255 (2019). https://doi.org/10.1021/acsnano.9b00688

    Article  CAS  Google Scholar 

  3. Y.-P. Li, X.-H. Zhu, S.-N. Li, Y.-C. Jiang, M.-C. Hu, Q.-G. Zhai, Highly Selective and Sensitive Turn-Off–On Fluorescent Probes for Sensing Al3+ Ions Designed by Regulating the Excited-State Intramolecular Proton Transfer Process in Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 11(12), 11338–11348 (2019). https://doi.org/10.1021/acsami.8b20410

    Article  CAS  Google Scholar 

  4. B. Roy, A.K. Bar, B. Gole, P.S. Mukherjee, Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive. J. Org. Chem. 78(3), 1306–1310 (2013). https://doi.org/10.1021/jo302585a

    Article  CAS  Google Scholar 

  5. G. Liang, J. Wu, H. Gao, Q. Wu, J. Lu, F. Zhu, B.Z. Tang, General Platform for Remarkably Thermoresponsive Fluorescent Polymers with Memory Function. ACS Macro Lett. 5(8), 909–914 (2016). https://doi.org/10.1021/acsmacrolett.6b00453

    Article  CAS  Google Scholar 

  6. K.S. Nair, P. Abhilash, K.P. Surendran, Silica-Based Organic–Inorganic Hybrid Fluorescent Ink for Security Applications. ACS Omega 4(2), 2577–2583 (2019). https://doi.org/10.1021/acsomega.8b03313

    Article  CAS  Google Scholar 

  7. A. Monguzzi, M. Ballabio, N. Yanai, N. Kimizuka, D. Fazzi, M. Campione, F. Meinardi, Highly Fluorescent Metal–Organic-Framework Nanocomposites for Photonic Applications. Nano Lett. 18(1), 528–534 (2018). https://doi.org/10.1021/acs.nanolett.7b04536

    Article  CAS  Google Scholar 

  8. K. Singh, A.M. Rotaru, A.A. Beharry, Fluorescent Chemosensors as Future Tools for Cancer Biology. ACS Chem. Biol. 13(7), 1785–1798 (2018). https://doi.org/10.1021/acschembio.8b00014

    Article  CAS  Google Scholar 

  9. Q. Xia, Z. Chen, Z. Yu, L. Wang, J. Qu, R. Liu, Aggregation-Induced Emission-Active Near-Infrared Fluorescent Organic Nanoparticles for Noninvasive Long-Term Monitoring of Tumor Growth. ACS Appl. Mater. Interfaces 10(20), 17081–17088 (2018). https://doi.org/10.1021/acsami.8b03861

    Article  CAS  Google Scholar 

  10. F. Tang, C. Wang, J. Wang, X. Wang, L. Li, Fluorescent Organic Nanoparticles with Enhanced Fluorescence by Self-Aggregation and their Application to Cellular Imaging. ACS Appl. Mater. Interfaces 6(20), 18337–18343 (2014). https://doi.org/10.1021/am505776a

    Article  CAS  Google Scholar 

  11. S. Zhang, R. Liu, Q. Cui, Y. Yang, Q. Cao, W. Xu, L. Li, Ultrabright Fluorescent Silica Nanoparticles Embedded with Conjugated Oligomers and Their Application in Latent Fingerprint Detection. ACS Appl. Mater. Interfaces 9(50), 44134–44145 (2017). https://doi.org/10.1021/acsami.7b15612

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Tan, Y.-M. Zhang, S. Zhu, I. Zhang, B. Yu, K. Wang, B. Yang, M. Li, B. Zou, S.X.-A. Zhang, Dynamic Behavior of Molecular Switches in Crystal under Pressure and Its Reflection on Tactile Sensing. J. Am. Chem. Soc. 137(2), 931–939 (2015). https://doi.org/10.1021/ja511499p

    Article  CAS  Google Scholar 

  13. E. Ramachandran, R. Dhamodharan, Tetrakis(trialkylsilylethynylphenyl)ethenes: mechanofluorochromism arising from steric considerations with an unusual crystal structure. J. Mater. Chem. C 5(40), 10469–10476 (2017). https://doi.org/10.1039/C7TC03211K

    Article  CAS  Google Scholar 

  14. B.R. Crenshaw, M. Burnworth, D. Khariwala, A. Hiltner, P.T. Mather, R. Simha, C. Weder, Deformation-Induced Color Changes in Mechanochromic Polyethylene Blends. Macromolecules 40(7), 2400–2408 (2007). https://doi.org/10.1021/ma062936j

    Article  CAS  Google Scholar 

  15. L.C. van der Werff, A.J. Robinson, I.L. Kyratzis, Combinatorial Approach for the Rapid Determination of Thermochromic Behavior of Binary and Ternary Cholesteric Liquid Crystalline Mixtures. ACS Comb. Sci. 14(11), 605–612 (2012). https://doi.org/10.1021/co3000874

    Article  CAS  Google Scholar 

  16. A. Dey, A. Garai, V. Gude, K. Biradha, Thermochromic, Solvatochromic, and Piezochromic Cd(II) and Zn(II) Coordination Polymers: Detection of Small Molecules by Luminescence Switching from Blue to Green. Cryst. Growth Des. 18(10), 6070–6077 (2018). https://doi.org/10.1021/acs.cgd.8b00924

    Article  CAS  Google Scholar 

  17. G. Mehlana, S.A. Bourne, Unravelling chromism in metal–organic frameworks. CrystEngComm 19(30), 4238–4259 (2017). https://doi.org/10.1039/C7CE00710H

    Article  CAS  Google Scholar 

  18. G.E. Hardy, J.C. Baldwin, J.I. Zink, W.C. Kaska, P.-H. Liu, L. Dubois, Triboluminescence spectroscopy of aromatic compounds. J. Am. Chem. Soc. 99(11), 3552–3558 (1977). https://doi.org/10.1021/ja00453a002

    Article  CAS  Google Scholar 

  19. A.J. Walton, Triboluminescence. Adv. Phys. 26(6), 887–948 (1977). https://doi.org/10.1080/00018737700101483

    Article  CAS  Google Scholar 

  20. J.I. Zink, G.E. Hardy, J.E. Sutton, Triboluminescence of sugars. J. Phys. Chem. 80(3), 248–249 (1976). https://doi.org/10.1021/j100544a007

    Article  CAS  Google Scholar 

  21. Q. Zhao, F. Li, C. Huang, Phosphorescent chemosensors based on heavy-metal complexes. Chem. Soc. Rev. 39, 3007 (2010)

    Article  CAS  Google Scholar 

  22. R. Kumar, A. Sharma, H. Singh, P. Suating, H.S. Kim, K. Sunwoo, I. Shim, B.C. Gibb, J.S. Kim, Revisiting Fluorescent Calixarenes: From Molecular Sensors to Smart Materials. Chem. Rev. 119(16), 9657–9721 (2019). https://doi.org/10.1021/acs.chemrev.8b00605

    Article  CAS  Google Scholar 

  23. M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 114(24), 12174–12277 (2014). https://doi.org/10.1021/cr500249p

    Article  CAS  Google Scholar 

  24. M. Villabona, M. Benet, S. Mena, R.O. Al-Kaysi, J. Hernando, G. Guirado, Multistimuli-Responsive Fluorescent Switches Based on Spirocyclic Meisenheimer Compounds: Smart Molecules for the Design of Optical Probes and Electrochromic Materials. J. Org. Chem. 83(16), 9166–9177 (2018). https://doi.org/10.1021/acs.joc.8b01211

    Article  CAS  Google Scholar 

  25. Q. Song, T. Lin, Z. Su, B. Chu, H. Yang, W. Li, C.-S. Lee, Organic Upconversion Display with an over 100% Photon-to-photon Upconversion Efficiency and a Simple Pixelless Device Structure. J. Physical Chem. Lett. 9(23), 6818–6824 (2018). https://doi.org/10.1021/acs.jpclett.8b02738

    Article  CAS  Google Scholar 

  26. M. Tanioka, S. Kamino, A. Muranaka, Y. Ooyama, H. Ota, Y. Shirasaki, J. Horigome, M. Ueda, M. Uchiyama, D. Sawada, S. Enomoto, Reversible Near-Infrared/Blue Mechanofluorochromism of Aminobenzopyranoxanthene. J. Am. Chem. Soc. 137(20), 6436–6439 (2015). https://doi.org/10.1021/jacs.5b00877

    Article  CAS  Google Scholar 

  27. G. Li, Y. Xu, W. Zhuang, Y. Wang, Preparation of organic mechanochromic fluorophores with simple structures and promising mechanochromic luminescence properties. RSC Adv. 6(88), 84787–84793 (2016). https://doi.org/10.1039/C6RA20022B

    Article  CAS  Google Scholar 

  28. J. Wu, Y. Cheng, J. Lan, D. Wu, S. Qian, L. Yan, Z. He, X. Li, K. Wang, B. Zou, J. You, Molecular Engineering of Mechanochromic Materials by Programmed C–H Arylation: Making a Counterpoint in the Chromism Trend. J. Am. Chem. Soc. 138(39), 12803–12812 (2016). https://doi.org/10.1021/jacs.6b03890

    Article  CAS  Google Scholar 

  29. T. Zhang, Y. Han, M. Liang, W. Bian, Y. Zhang, X. Li, C. Zhang, P. Xue, Substituent effect on photophysical properties, crystal structures and mechanochromism of D-π-A phenothiazine derivatives. Dyes Pigments 171, 107692 (2019). https://doi.org/10.1016/j.dyepig.2019.107692

    Article  CAS  Google Scholar 

  30. G. Zhang, J. Sun, P. Xue, Z. Zhang, P. Gong, J. Peng, R. Lu, Phenothiazine modified triphenylacrylonitrile derivates: AIE and mechanochromism tuned by molecular conformation. J. Mater. Chem. C 3(12), 2925–2932 (2015). https://doi.org/10.1039/C4TC02925A

    Article  CAS  Google Scholar 

  31. L. Huang, J. Liu, L. Liu, Q. Yang, Z. Ma, X. Jia, A D-A-D’ type organic molecule with persistent phosphorescence exhibiting dual-mode mechanochromism. Dyes Pigments 173, 107963 (2020). https://doi.org/10.1016/j.dyepig.2019.107963

    Article  CAS  Google Scholar 

  32. J.-J. Liu, J. Yang, J.-L. Wang, Z.-F. Chang, B. Li, W.-T. Song, Z. Zhao, X. Lou, J. Dai, F. Xia, Tetrathienylethene based red aggregation-enhanced emission probes: super red-shifted mechanochromic behavior and highly photostable cell membrane imaging. Mater. Chem. Front. 2(6), 1126–1136 (2018). https://doi.org/10.1039/C8QM00008E

    Article  CAS  Google Scholar 

  33. C. Guo, M. Li, W. Yuan, K. Wang, B. Zou, Y. Chen, Tuning the Mechanochromic Luminescence of BOPIM Complexes by Rational Introduction of Aromatic Substituents. J. Phys. Chem. C 121(48), 27009–27017 (2017). https://doi.org/10.1021/acs.jpcc.7b09667

    Article  CAS  Google Scholar 

  34. Y. Sagara, T. Komatsu, T. Ueno, K. Hanaoka, T. Kato, T. Nagano, A Water-Soluble Mechanochromic Luminescent Pyrene Derivative Exhibiting Recovery of the Initial Photoluminescence Color in a High-Humidity Environment. Adv. Funct. Mater. 23(42), 5277–5284 (2013). https://doi.org/10.1002/adfm.201300180

    Article  CAS  Google Scholar 

  35. M. Mitani, S. Ogata, S. Yamane, M. Yoshio, M. Hasegawa, T. Kato, Mechanoresponsive liquid crystals exhibiting reversible luminescent color changes at ambient temperature. J. Mater. Chem. C 4(14), 2752–2760 (2016). https://doi.org/10.1039/C5TC03578C

    Article  CAS  Google Scholar 

  36. S. Yagai, T. Seki, H. Aonuma, K. Kawaguchi, T. Karatsu, T. Okura, A. Sakon, H. Uekusa, H. Ito, Mechanochromic Luminescence Based on Crystal-to-Crystal Transformation Mediated by a Transient Amorphous State. Chem. Mater. 28(1), 234–241 (2016). https://doi.org/10.1021/acs.chemmater.5b03932

    Article  CAS  Google Scholar 

  37. M. Krikorian, S. Liu, T.M. Swager, Columnar Liquid Crystallinity and Mechanochromism in Cationic Platinum(II) Complexes. J. Am. Chem. Soc. 136(8), 2952–2955 (2014). https://doi.org/10.1021/ja4114352

    Article  CAS  Google Scholar 

  38. Q. Benito, X.F. Le Goff, S. Maron, A. Fargues, A. Garcia, C. Martineau, F. Taulelle, S. Kahlal, T. Gacoin, J.-P. Boilot, S. Perruchas, Polymorphic Copper Iodide Clusters: Insights into the Mechanochromic Luminescence Properties. J. Am. Chem. Soc. 136(32), 11311–11320 (2014). https://doi.org/10.1021/ja500247b

    Article  CAS  Google Scholar 

  39. S. Perruchas, X.F. Le Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin, J.-P. Boilot, Mechanochromic and Thermochromic Luminescence of a Copper Iodide Cluster. J. Am. Chem. Soc. 132(32), 10967–10969 (2010). https://doi.org/10.1021/ja103431d

    Article  CAS  Google Scholar 

  40. Q. Benito, I. Maurin, M. Poggi, C. Martineau-Corcos, T. Gacoin, J.-P. Boilot, S. Perruchas, Impact of crystalline packing on the mechanochromic luminescence properties of copper based compounds: towards functional coatings. J. Mater. Chem. C 4(47), 11231–11237 (2016). https://doi.org/10.1039/C6TC04262G

    Article  CAS  Google Scholar 

  41. L.-X. Hu, M. Gao, T. Wen, Y. Kang, S. Chen, Synthesis of Halide-Modulated Cuprous(I) Coordination Polymers with Mechanochromic and Photocatalytic Properties. Inorg. Chem. 56(11), 6507–6511 (2017). https://doi.org/10.1021/acs.inorgchem.7b00598

    Article  CAS  Google Scholar 

  42. B. Huitorel, R. Utrera-Melero, F. Massuyeau, J.-Y. Mevelec, B. Baptiste, A. Polian, T. Gacoin, C. Martineau-Corcos, S. Perruchas, Luminescence mechanochromism of copper iodide clusters: a rational investigation. Dalton Trans. 48(22), 7899–7909 (2019). https://doi.org/10.1039/C9DT01161G

    Article  CAS  Google Scholar 

  43. T. Seki, K. Kashiyama, H. Ito, Luminescent mechanochromism of gold N-heterocyclic carbene complexes with hypso- and bathochromic spectral shifts. Dalton Trans. 48(21), 7105–7109 (2019). https://doi.org/10.1039/C9DT00566H

    Article  CAS  Google Scholar 

  44. M. Jin, T.S. Chung, T. Seki, H. Ito, M.A. Garcia-Garibay, Phosphorescence Control Mediated by Molecular Rotation and Aurophilic Interactions in Amphidynamic Crystals of 1,4-Bis[tri-(p-fluorophenyl)phosphane-gold(I)-ethynyl]benzene. J. Am. Chem. Soc. 139(49), 18115–18121 (2017). https://doi.org/10.1021/jacs.7b11316

    Article  CAS  Google Scholar 

  45. H. Ito, T. Saito, N. Oshima, N. Kitamura, S. Ishizaka, Y. Hinatsu, M. Wakeshima, M. Kato, K. Tsuge, M. Sawamura, Reversible Mechanochromic Luminescence of [(C6F5Au)2(μ-1,4-Diisocyanobenzene)]. J. Am. Chem. Soc. 130, 10044 (2008)

    Article  CAS  Google Scholar 

  46. B.-C. Tzeng, T.-Y. Chang, S.-L. Wei, H.-S. Sheu, Reversible Phase Transformation and Mechanochromic Luminescence of ZnII-Dipyridylamide-Based Coordination Frameworks. Chemistry 18(16), 5105–5112 (2012). https://doi.org/10.1002/chem.201103405

    Article  CAS  Google Scholar 

  47. T. Seki, Y. Takamatsu, H. Ito, A Screening Approach for the Discovery of Mechanochromic Gold(I) Isocyanide Complexes with Crystal-to-Crystal Phase Transitions. J. Am. Chem. Soc. 138(19), 6252–6260 (2016). https://doi.org/10.1021/jacs.6b02409

    Article  CAS  Google Scholar 

  48. Y. Vidavsky, S.J. Yang, B.A. Abel, I. Agami, C.E. Diesendruck, G.W. Coates, M.N. Silberstein, Enabling Room-Temperature Mechanochromic Activation in a Glassy Polymer: Synthesis and Characterization of Spiropyran Polycarbonate. J. Am. Chem. Soc. 141(25), 10060–10067 (2019). https://doi.org/10.1021/jacs.9b04229

    Article  CAS  Google Scholar 

  49. F. Cellini, L. Zhou, S. Khapli, S.D. Peterson, M. Porfiri, Large deformations and fluorescence response of mechanochromic polyurethane sensors. Mech. Mater. 93, 145–162 (2016). https://doi.org/10.1016/j.mechmat.2015.10.013

    Article  Google Scholar 

  50. D.R.T. Roberts, S.J. Holder, Mechanochromic systems for the detection of stress, strain and deformation in polymeric materials. J. Mater. Chem. 21(23), 8256–8268 (2011). https://doi.org/10.1039/C0JM04237D

    Article  CAS  Google Scholar 

  51. K. Ishizuki, H. Oka, D. Aoki, R. Goseki, H. Otsuka, Mechanochromic Polymers That Turn Green Upon the Dissociation of Diarylbibenzothiophenonyl: The Missing Piece toward Rainbow Mechanochromism. Chemistry 24(13), 3170–3173 (2018). https://doi.org/10.1002/chem.201800194

    Article  CAS  Google Scholar 

  52. Y. Sagara, M. Karman, E. Verde-Sesto, K. Matsuo, Y. Kim, N. Tamaoki, C. Weder, Rotaxanes as Mechanochromic Fluorescent Force Transducers in Polymers. J. Am. Chem. Soc. 140(5), 1584–1587 (2018). https://doi.org/10.1021/jacs.7b12405

    Article  CAS  Google Scholar 

  53. A. Lavrenova, J. Farkas, C. Weder, Y.C. Simon, Visualization of Polymer Deformation Using Microcapsules Filled with Charge-Transfer Complex Precursors. ACS Appl. Mater. Interfaces 7(39), 21828–21834 (2015). https://doi.org/10.1021/acsami.5b05797

    Article  CAS  Google Scholar 

  54. A. Battisti, P. Minei, A. Pucci, R. Bizzarri, Hue-based quantification of mechanochromism towards a cost-effective detection of mechanical strain in polymer systems. Chem. Commun. 53(1), 248–251 (2017). https://doi.org/10.1039/C6CC08360A

    Article  CAS  Google Scholar 

  55. Y. Xie, Z. Li, Triboluminescence: Recalling Interest and New Aspects. Chem 4(5), 943–971 (2018). https://doi.org/10.1016/j.chempr.2018.01.001

    Article  CAS  Google Scholar 

  56. P. Jha, B.P. Chandra, Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29(8), 977–993 (2014). https://doi.org/10.1002/bio.2647

    Article  CAS  Google Scholar 

  57. S. Li, M. Wu, Y. Kang, H.-W. Zheng, X.-J. Zheng, D.-C. Fang, L.-P. Jin, Grinding-Triggered Single Crystal-to-Single Crystal Transformation of a Zinc(II) Complex: Mechanochromic Luminescence and Aggregation-Induced Emission Properties. Inorg. Chem. 58(7), 4626–4633 (2019). https://doi.org/10.1021/acs.inorgchem.9b00195

    Article  CAS  Google Scholar 

  58. M. Ikeya, G. Katada, S. Ito, Tunable mechanochromic luminescence of 2-alkyl-4-(pyren-1-yl)thiophenes: controlling the self-recovering properties and the range of chromism. Chem. Commun. 55(82), 12296–12299 (2019). https://doi.org/10.1039/C9CC06406K

    Article  CAS  Google Scholar 

  59. Y. Matsuo, Y. Wang, H. Ueno, T. Nakagawa, H. Okada, Mechanochromism, Twisted/Folded Structure Determination, and Derivatization of (N-Phenylfluorenylidene)acridane. Angew. Chem. Int. Ed. 58(26), 8762–8767 (2019). https://doi.org/10.1002/anie.201902636

    Article  CAS  Google Scholar 

  60. Z. Wang, Z. Ma, Y. Wang, Z. Xu, Y. Luo, Y. Wei, X. Jia, A Novel Mechanochromic and Photochromic Polymer Film: When Rhodamine Joins Polyurethane. Adv. Mater. 27(41), 6469–6474 (2015). https://doi.org/10.1002/adma.201503424

    Article  CAS  Google Scholar 

  61. Z. Lu, S. Yang, X. Liu, Y. Qin, S. Lu, Y. Liu, R. Zhao, L. Zheng, H. Zhang, Facile synthesis and separation of E/Z isomers of aromatic-substituted tetraphenylethylene for investigating their fluorescent properties via single crystal analysis. J. Mater. Chem. C 7(14), 4155–4163 (2019). https://doi.org/10.1039/C9TC00446G

    Article  CAS  Google Scholar 

  62. Y. Zhang, H. Mao, L. Kong, Y. Tian, Z. Tian, X. Zeng, J. Zhi, J. Shi, B. Tong, Y. Dong, Effect of E/Z isomerization on the aggregation-induced emission features and mechanochromic performance of dialdehyde-substituted hexaphenyl-1,3-butadiene. Dyes Pigments 133, 354–362 (2016). https://doi.org/10.1016/j.dyepig.2016.06.016

    Article  CAS  Google Scholar 

  63. J. Luo, Z. Xie, J.W. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu, B.Z. Tang, Aggregation-induced Emission of 1-Methyl-1,2,3,4,5-Pentaphenylsilole. Chem. Commun. 2001, 1740 (2001)

    Article  Google Scholar 

  64. Z. Chen, P.-S. Huang, Z. Li, J. Yin, G.-A. Yu, S.H. Liu, Triisocyano-based trinuclear gold(I) complexes with aggregation-induced emission (AIE) and mechanochromic luminescence characteristics. Inorg. Chim. Acta 432, 192–197 (2015). https://doi.org/10.1016/j.ica.2015.04.016

    Article  CAS  Google Scholar 

  65. D. Cheng, D. Xu, Y. Wang, H. Zhou, Y. Zhang, X. Liu, A. Han, C. Zhang, High contrast mechanochromic luminescence of aggregation-induced emission (AIE)-based 9,9-dimethyl-9,10-dihydroacridine-containing cruciform luminophores. Dyes Pigments 173, 107934 (2020). https://doi.org/10.1016/j.dyepig.2019.107934

    Article  CAS  Google Scholar 

  66. M.M. Islam, Z. Hu, Q. Wang, C. Redshaw, X. Feng, Pyrene-based aggregation-induced emission luminogens and their applications. Mater. Chem. Front. 3(5), 762–781 (2019). https://doi.org/10.1039/C9QM00090A

    Article  CAS  Google Scholar 

  67. B. Xu, Z. Chi, J. Zhang, X. Zhang, H. Li, X. Li, S. Liu, Y. Zhang, J. Xu, Piezofluorochromic and Aggregation-Induced-Emission Compounds Containing Triphenylethylene and Tetraphenylethylene Moieties. Chem. Asian J. 6(6), 1470–1478 (2011). https://doi.org/10.1002/asia.201100211

    Article  CAS  Google Scholar 

  68. V.S. Padalkar, K. Kuwada, D. Sakamaki, N. Tohnai, T. Akutagawa, K.-I. Sakai, T. Sakurai, S. Seki, AIE Active Carbazole-Benzothiazole Based ESIPT Motifs: Positional Isomers Directing the Optical and Electronic Properties. ChemistrySelect 2(5), 1959–1966 (2017). https://doi.org/10.1002/slct.201602044

    Article  CAS  Google Scholar 

  69. T. Jadhav, B. Dhokale, Y. Patil, R. Misra, Aggregation induced emission and mechanochromism in tetraphenylethene substituted pyrazabole. RSC Adv. 5(83), 68187–68191 (2015). https://doi.org/10.1039/C5RA12697E

    Article  CAS  Google Scholar 

  70. Z.-F. Chang, L.-M. Jing, Y.-Y. Liu, J.-J. Liu, Y.-C. Ye, Y.S. Zhao, S.-C. Yuan, J.-L. Wang, Constructing small molecular AIE luminophores through a 2,2-(2,2-diphenylethene-1,1-diyl)dithiophene core and peripheral triphenylamine with applications in piezofluorochromism, optical waveguides, and explosive detection. J. Mater. Chem. C 4(36), 8407–8415 (2016). https://doi.org/10.1039/C6TC02395A

    Article  CAS  Google Scholar 

  71. H. Zhou, M.H. Chua, B.Z. Tang, J. Xu, Aggregation-induced emission (AIE)-active polymers for explosive detection. Polym. Chem. 10(28), 3822–3840 (2019). https://doi.org/10.1039/C9PY00322C

    Article  CAS  Google Scholar 

  72. J.K. Salunke, F.L. Wong, K. Feron, S. Manzhos, M.F. Lo, D. Shinde, A. Patil, C.S. Lee, V.A.L. Roy, P. Sonar, P.P. Wadgaonkar, Phenothiazine and carbazole substituted pyrene based electroluminescent organic semiconductors for OLED devices. J. Mater. Chem. C 4(5), 1009–1018 (2016). https://doi.org/10.1039/C5TC03690A

    Article  CAS  Google Scholar 

  73. P. Gopikrishna, N. Meher, P.K. Iyer, Functional 1,8-Naphthalimide AIE/AIEEgens: Recent Advances and Prospects. ACS Appl. Mater. Interfaces 10(15), 12081–12111 (2018). https://doi.org/10.1021/acsami.7b14473

    Article  CAS  Google Scholar 

  74. Z. Ma, Z. Wang, M. Teng, Z. Xu, X. Jia, Mechanically Induced Multicolor Change of Luminescent Materials. ChemPhysChem 16, 1811 (2015)

    Article  CAS  Google Scholar 

  75. P. Xue, J. Ding, P. Wang, R. Lu, Recent Progress in the Mechanochromism of Phosphorescent Organic Molecules and Metal Complexes. J. Mater. Chem. C 4, 6688 (2016)

    Article  CAS  Google Scholar 

  76. Z. Chi, X. Zhang, B. Xu, X. Zhou, C. Ma, Y. Zhang, S. Liu, J. Xu, Recent Advances in Organic Mechanofluorochromic Materials. Chem. Soc. Rev. 41, 3878 (2012)

    Article  CAS  Google Scholar 

  77. X. Zhang, Z. Chi, Y. Zhang, S. Liu, J. Xu, Recent Advances in Mechanochromic Luminescent Metal Complexes. J. Mater. Chem. C 1, 3376 (2013)

    Article  CAS  Google Scholar 

  78. K. Ishizuki, D. Aoki, R. Goseki, H. Otsuka, Multicolor Mechanochromic Polymer Blends That Can Discriminate between Stretching and Grinding. ACS Macro Lett. 7, 556 (2018)

    Article  CAS  Google Scholar 

  79. Z. Yang, Z. Chi, Z. Mao, Y. Zhang, S. Liu, J. Zhao, M.P. Aldred, Z. Chi, Recent advances in mechano-responsive luminescence of tetraphenylethylene derivatives with aggregation-induced emission properties. Mater. Chem. Front. 2, 861 (2018)

    Article  CAS  Google Scholar 

  80. J. Zhao, Z. Chi, Y. Zhang, Z. Mao, Z. Yang, E. Ubba, Z. Chi, Recent progress in the mechanofluorochromism of cyanoethylene derivatives with aggregation-induced emission. J. Mater. Chem. C 6, 6327 (2018)

    Article  CAS  Google Scholar 

  81. Y. Dong, J.W.Y. Lam, B. Tang, Mechanochromic Luminescence of Aggregation-Induced Emission Luminogens. J. Phys. Chem. Lett. 6, 3429 (2015)

    Article  CAS  Google Scholar 

  82. J. Mei, Y. Huang, H. Tian, Progress and Trends in AIE-Based Bioprobes: A Brief Overview. ACS Appl. Mater. Interfaces 10(15), 12217–12261 (2018). https://doi.org/10.1021/acsami.7b14343

    Article  CAS  Google Scholar 

  83. W. Liu, Y. Wang, G. Ge, L. Ma, L. Ren, Y. Zhang, Design, synthesis, photophysical properties and intrinsic mechanism of two difluoroboron β-diketonate complexes with TPE and N-alkyl pyrrole units. Dyes Pigments 171, 107704 (2019). https://doi.org/10.1016/j.dyepig.2019.107704

    Article  CAS  Google Scholar 

  84. S. Ghosh, S. Pal, S. Rajamanickam, R. Shome, P.R. Mohanta, S.S. Ghosh, B.K. Patel, Access to Multifunctional AEEgens via Ru(II)-Catalyzed Quinoxaline-Directed Oxidative Annulation. ACS Omega 4(3), 5565–5577 (2019). https://doi.org/10.1021/acsomega.9b00274

    Article  CAS  Google Scholar 

  85. S. Ito, T. Taguchi, T. Yamada, T. Ubukata, Y. Yamaguchi, M. Asami, Indolylbenzothiadiazoles with varying substituents on the indole ring: a systematic study on the self-recovering mechanochromic luminescence. RSC Adv. 7(28), 16953–16962 (2017). https://doi.org/10.1039/C7RA01006K

    Article  CAS  Google Scholar 

  86. P. Xu, Q. Qiu, X. Ye, M. Wei, W. Xi, H. Feng, Z. Qian, Halogenated tetraphenylethene with enhanced aggregation-induced emission: an anomalous anti-heavy-atom effect and self-reversible mechanochromism. Chem. Commun. 55(99), 14938–14941 (2019). https://doi.org/10.1039/C9CC07045A

    Article  CAS  Google Scholar 

  87. X. Zhang, Z. Chi, H. Li, B. Xu, X. Li, W. Zhou, S. Liu, Y. Zhang, J. Xu, Piezofluorochromism of an Aggregation-Induced Emission Compound Derived from Tetraphenylethylene. Chem. Asian J. 6, 808 (2011)

    Article  CAS  Google Scholar 

  88. J. Wei, B. Liang, X. Cheng, Z. Zhang, H. Zhang, Y. Wang, High-contrast and reversible mechanochromic luminescence of a D–π–A compound with a twisted molecular conformation. RSC Adv. 5(88), 71903–71910 (2015). https://doi.org/10.1039/C5RA12050K

    Article  CAS  Google Scholar 

  89. X. Wang, Q. Liu, H. Yan, Z. Liu, M. Yao, Q. Zhang, S. Gong, W. He, Piezochromic luminescence behaviors of two new benzothiazole–enamido boron difluoride complexes: intra- and inter-molecular effects induced by hydrostatic compression. Chem. Commun. 51(35), 7497–7500 (2015). https://doi.org/10.1039/C5CC01902H

    Article  CAS  Google Scholar 

  90. H. Zhu, P. Chen, L. Kong, Y. Tian, J. Yang, Twisted Donor−π–Acceptor Carbazole Luminophores with Substituent-Dependent Properties of Aggregated Behavior (Aggregation-Caused Quenching to Aggregation-Enhanced Emission) and Mechanoresponsive Luminescence. J. Phys. Chem. C 122(34), 19793–19800 (2018). https://doi.org/10.1021/acs.jpcc.8b05638

    Article  CAS  Google Scholar 

  91. T. Wen, D.-X. Zhang, J. Liu, R. Lin, J. Zhang, A multifunctional helical Cu(i) coordination polymer with mechanochromic, sensing and photocatalytic properties. Chem. Commun. 49(50), 5660–5662 (2013). https://doi.org/10.1039/C3CC42241K

    Article  CAS  Google Scholar 

  92. D. Ma, T. Tsuboi, Y. Qiu, L. Duan, Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices. Adv. Mater. 29(3), 1603253 (2017). https://doi.org/10.1002/adma.201603253

    Article  CAS  Google Scholar 

  93. J. Ni, X. Zhang, N. Qiu, Y.-H. Wu, L.-Y. Zhang, J. Zhang, Z.-N. Chen, Mechanochromic Luminescence Switch of Platinum(II) Complexes with 5-Trimethylsilylethynyl-2,2′-bipyridine. Inorg. Chem. 50(18), 9090–9096 (2011). https://doi.org/10.1021/ic2012777

    Article  CAS  Google Scholar 

  94. G. Li, D. Zhu, X. Wang, Z. Su, M.R. Bryce, Dinuclear metal complexes: multifunctional properties and applications. Chem. Soc. Rev. 49(3), 765–838 (2020). https://doi.org/10.1039/C8CS00660A

    Article  CAS  Google Scholar 

  95. R. Gawinecki, G. Viscardi, E. Barni, M.A. Hanna, 4- Tert-butyl-1-(4'-dimethylamino-benzylideneamino)pyridinium perchlorate (BDPP): a novel fluorescent dye. Dyes Pigments 23(2), 73–78 (1993). https://doi.org/10.1016/0143-7208(93)80026-W

    Article  CAS  Google Scholar 

  96. T. Seki, K. Sakurada, H. Ito, Mismatched Changes of the Photoluminescence and Crystalline Structure of a Mechanochromic Gold(I) Isocyanide Complex. Chem. Commun. 51, 13933 (2015)

    Article  CAS  Google Scholar 

  97. Z. Wu, J. Liu, Y. Gao, H. Liu, T. Li, H. Zou, Z. Wang, K. Zhang, Y. Wang, H. Zhang, B. Yang, Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property. J. Am. Chem. Soc. 137(40), 12906–12913 (2015). https://doi.org/10.1021/jacs.5b06550

    Article  CAS  Google Scholar 

  98. M.S. Deshmukh, A. Yadav, R. Pant, R. Boomishankar, Thermochromic and Mechanochromic Luminescence Umpolung in Isostructural Metal–Organic Frameworks Based on Cu6I6 Clusters. Inorg. Chem. 54(4), 1337–1345 (2015). https://doi.org/10.1021/ic502207f

    Article  CAS  Google Scholar 

  99. S.-T. Zhang, T.-R. Li, B.-D. Wang, Z.-Y. Yang, J. Liu, Z.-Y. Wang, W.-K. Dong, A new cyclic supramolecular Zn(ii) complex derived from a N2O2 oxime chelate ligand with luminescence mechanochromism. Dalton Trans. 43(7), 2713–2717 (2014). https://doi.org/10.1039/C3DT52340C

    Article  CAS  Google Scholar 

  100. Z. Chen, J. Zhang, M. Song, J. Yin, G.A. Yu, S.H. Liu, A Novel Fluorene-Based Aggregation-Induced Emission (AIE)-Active Gold(I) Complex with Crystallization-Induced Emission Enhancement (CIEE) and Reversible Mechanochromism Characteristics. Chem. Commun. 51, 326 (2015)

    Article  CAS  Google Scholar 

  101. K.-Y. Zhao, G.-G. Shan, Q. Fu, Z.-M. Su, Tuning Emission of AIE-Active Organometallic Ir(III) Complexes by Simple Modulation of Strength of Donor/Acceptor on Ancillary Ligands. Organometallics 35(23), 3996–4001 (2016). https://doi.org/10.1021/acs.organomet.6b00788

    Article  CAS  Google Scholar 

  102. K.-Y. Zhao, H.-T. Mao, L.-L. Wen, G.-G. Shan, Q. Fu, H.-Z. Sun, Z.-M. Su, A simple strategy to achieve remarkable mechanochromism of cationic Ir(iii) phosphors through subtle ligand modification. J. Mater. Chem. C 6(43), 11686–11693 (2018). https://doi.org/10.1039/C8TC03696A

    Article  CAS  Google Scholar 

  103. C.-J. Lin, Y.-H. Liu, S.-M. Peng, T. Shinmyozu, J.-S. Yang, Excimer–Monomer Photoluminescence Mechanochromism and Vapochromism of Pentiptycene-Containing Cyclometalated Platinum(II) Complexes. Inorg. Chem. 56(9), 4978–4989 (2017). https://doi.org/10.1021/acs.inorgchem.7b00009

    Article  CAS  Google Scholar 

  104. X. Zhu, P. Cui, S. Kilina, W. Sun, Multifunctional Cationic Iridium(III) Complexes Bearing 2-Aryloxazolo[4,5-f][1,10]phenanthroline (N^N) Ligand: Synthesis, Crystal Structure, Photophysics, Mechanochromic/Vapochromic Effects, and Reverse Saturable Absorption. Inorg. Chem. 56(22), 13715–13731 (2017). https://doi.org/10.1021/acs.inorgchem.7b01472

    Article  CAS  Google Scholar 

  105. T. Seki, N. Tokodai, S. Omagari, T. Nakanishi, Y. Hasegawa, T. Iwasa, T. Taketsugu, H. Ito, Luminescent Mechanochromic 9-Anthryl Gold(I) Isocyanide Complex with an Emission Maximum at 900 nm after Mechanical Stimulation. J. Am. Chem. Soc. 139(19), 6514–6517 (2017). https://doi.org/10.1021/jacs.7b00587

    Article  CAS  Google Scholar 

  106. Z. Chen, G. Liu, R. Wang, S. Pu, Highly emissive carbazole-based gold(i) complex with a long room-temperature phosphorescence lifetime and self-reversible mechanochromism characteristics. RSC Adv. 7(25), 15112–15115 (2017). https://doi.org/10.1039/C7RA00913E

    Article  CAS  Google Scholar 

  107. X.-Y. Wang, J. Zhang, J. Yin, S.H. Liu, Multiple Photoluminescent Processes from Pyrene Derivatives with Aggregation- and Mechano-Induced Excimer Emission. Chem. Asian J. 14(16), 2903–2910 (2019). https://doi.org/10.1002/asia.201900798

    Article  CAS  Google Scholar 

  108. Y. Liu, J. Duan, F. Qi, D. Tian, X. Wang, Z. Liu, W. Huang, Optical properties and mechanofluorochromism of new BODIPY dyes based on the pyridine–pyrimidine hybrid structure. Dalton Trans. 46(31), 10332–10338 (2017). https://doi.org/10.1039/C7DT02259J

    Article  CAS  Google Scholar 

  109. Y. Shi, J. Wang, H. Li, G. Hu, X. Li, S.K. Mellerup, N. Wang, T. Peng, S. Wang, A Simple Multi-Responsive System Based on Aldehyde Functionalized Amino-Boranes. Chem. Sci. 9, 1902 (2018)

    Article  CAS  Google Scholar 

  110. P.-Z. Chen, J.-X. Wang, L.-Y. Niu, Y.-Z. Chen, Q.-Z. Yang, Carbazole-containing difluoroboron β-diketonate dyes: two-photon excited fluorescence in solution and grinding-induced blue-shifted emission in the solid state. J. Mater. Chem. C 5(47), 12538–12546 (2017). https://doi.org/10.1039/C7TC04751G

    Article  CAS  Google Scholar 

  111. K. Suenaga, K. Tanaka, Y. Chujo, Design and luminescence chromism of fused boron complexes having constant emission efficiencies in solution and in the amorphous and crystalline states. Eur. J. Org. Chem. 2017, 5191 (2017)

    Article  CAS  Google Scholar 

  112. H. Gao, D. Xu, X. Liu, A. Han, L. Zhou, C. Zhang, Y. Yang, W. Li, Tetraphenylethene modified β-ketoiminate boron complexes bearing aggregation-induced emission and mechanofluorochromism. RSC Adv. 7, 1348 (2017)

    Article  CAS  Google Scholar 

  113. D. Zhou, C.H. Ryoo, D. Liu, S. Wang, G. Qian, Y. Zheng, S.Y. Park, W. Zhu, Y. Wang, Cruciform Molecules Bearing Bis(phenylsulfonyl)benzene Moieties for High-Efficiency Solution Processable OLEDs: When Thermally Activated Delayed Fluorescence Meets Mechanochromic Luminescence. Adv. Opt. Mater. 8(2), 1901021 (2020). https://doi.org/10.1002/adom.201901021

    Article  CAS  Google Scholar 

  114. B. Li, H. Ge, Highly selective electrochemical hydrogenation of alkynes: Rapid construction of mechanochromic materials. Sci. Adv. 5(5), eaaw2774 (2019). https://doi.org/10.1126/sciadv.aaw2774

    Article  CAS  Google Scholar 

  115. A. Ekbote, S.H. Han, T. Jadhav, S.M. Mobin, J.Y. Lee, R. Misra, Stimuli responsive AIE active positional isomers of phenanthroimidazole as non-doped emitters in OLEDs. J. Mater. Chem. C 6, 2077 (2018)

    Article  CAS  Google Scholar 

  116. Y. Wang, D. Xu, H. Gao, Y. Wang, X. Liu, A. Han, C. Zhang, L. Zang, Twisted Donor–Acceptor Cruciform Luminophores Possessing Substituent-Dependent Properties of Aggregation-Induced Emission and Mechanofluorochromism. J. Phys. Chem. C 122, 2297 (2018)

    Article  CAS  Google Scholar 

  117. Y. Ma, Y. Zhang, L. Kong, J. Yang, Mechanoresponsive Material of AIE-Active 1,4-Dihydropyrrolo[3,2-b]pyrrole Luminophores Bearing Tetraphenylethylene Group with Rewritable Data Storage. Molecules 23(12), 3255 (2018)

    Article  Google Scholar 

  118. X. Feng, J. Zhang, Z. Hu, Q. Wang, M.M. Islam, J.-S. Ni, M.R.J. Elsegood, J.W.Y. Lam, E. Zhou, B.Z. Tang, Pyrene-based aggregation-induced emission luminogens (AIEgen): structure correlated with particle size distribution and mechanochromism. J. Mater. Chem. C 7(23), 6932–6940 (2019). https://doi.org/10.1039/C9TC01665A

    Article  CAS  Google Scholar 

  119. Y. Xiong, J. Huang, Y. Liu, B. Xiao, B. Xu, Z. Zhao, B.Z. Tang, High-contrast luminescence dependent on polymorphism and mechanochromism of AIE-active (4-(phenothiazin-10-yl)phenyl)(pyren-1-yl)methanone. J. Mater. Chem. C (2020). https://doi.org/10.1039/C9TC05064G

  120. Y. Li, W. Huang, J. Yong, S. Huang, Y. Li, Y. Liu, D. Wu, Aggregation-induced ratiometric emission and mechanochromic luminescence in a pyrene-benzohydrazonate conjugate. New J. Chem. 42(15), 12644–12648 (2018). https://doi.org/10.1039/C8NJ01379A

    Article  CAS  Google Scholar 

  121. Q. Chai, J. Wei, B. Bai, H. Wang, M. Li, Multiple luminescent switching of pyrenyl-substituted acylhydrazone derivative. Dyes Pigments 152, 93–99 (2018). https://doi.org/10.1016/j.dyepig.2018.01.051

    Article  CAS  Google Scholar 

  122. Y. Li, Z. Ma, A. Li, W. Xu, Y. Wang, H. Jiang, K. Wang, Y. Zhao, X. Jia, A Single Crystal with Multiple Functions of Optical Waveguide, Aggregation-Induced Emission, and Mechanochromism. ACS Appl. Mater. Interfaces 9, 8910 (2017)

    Article  CAS  Google Scholar 

  123. F. Khan, A. Ekbote, R. Misra, Reversible mechanochromism and aggregation induced enhanced emission in phenothiazine substituted tetraphenylethylene. New J. Chem. 43(41), 16156–16163 (2019). https://doi.org/10.1039/C9NJ03290H

    Article  CAS  Google Scholar 

  124. A. Ekbote, T. Jadhav, R. Misra, T-Shaped donor–acceptor–donor type tetraphenylethylene substituted quinoxaline derivatives: aggregation-induced emission and mechanochromism. New J. Chem. 41(17), 9346–9353 (2017). https://doi.org/10.1039/C7NJ01531C

    Article  CAS  Google Scholar 

  125. Y. Yin, Z. Chen, C. Fan, G. Liu, S. Pu, 1,8-Naphthalimide-Based Highly Emissive Luminophors with Various Mechanofluorochromism and Aggregation-Induced Characteristics. ACS Omega 4(10), 14324–14332 (2019). https://doi.org/10.1021/acsomega.9b02110

    Article  CAS  Google Scholar 

  126. T. Jadhav, J.M. Choi, J. Shinde, J.Y. Lee, R. Misra, Mechanochromism and electroluminescence in positional isomers of tetraphenylethylene substituted phenanthroimidazoles. J. Mater. Chem. C 5(24), 6014–6020 (2017). https://doi.org/10.1039/C7TC00950J

    Article  CAS  Google Scholar 

  127. W. Song, J. Zhi, T. Wang, B. Li, S. Ni, Y. Ye, J.-L. Wang, Tetrathienylethene-based Positional Isomers with Aggregation-induced Emission Enabling Super Red-shifted Reversible Mechanochromism and Naked-eye Sensing of Hydrazine Vapor. Chem. Asian J. 14(21), 3875–3882 (2019). https://doi.org/10.1002/asia.201901097

    Article  CAS  Google Scholar 

  128. A. Ekbote, S.M. Mobin, R. Misra, Structure–property relationship in multi-stimuli responsive D–A–A′ benzothiazole functionalized isomers. J. Mater. Chem. C 6(40), 10888–10901 (2018). https://doi.org/10.1039/C8TC04310H

    Article  CAS  Google Scholar 

  129. Z.-Y. Wang, J.-W. Zhao, P. Li, T. Feng, W.-J. Wang, S.-L. Tao, Q.-X. Tong, Novel phenanthroimidazole-based blue AIEgens: reversible mechanochromism, bipolar transporting properties, and electroluminescence. New J. Chem. 42(11), 8924–8932 (2018). https://doi.org/10.1039/C8NJ01006D

    Article  CAS  Google Scholar 

  130. A.L. Balch, Dynamic crystals: Visually detected mechanochemical changes in the luminescence of gold and other transition-metal complexes. Angew. Chem. Int. Ed. 48, 2641 (2009)

    Article  CAS  Google Scholar 

  131. T. Tsukuda, M. Kawase, A. Dairiki, K. Matsumoto, T. Tsubomura, Brilliant reversible luminescent mechanochromism of silver(i) complexes containing o-bis(diphenylphosphino)benzene and phosphinesulfide. Chem. Commun. 46(11), 1905–1907 (2010). https://doi.org/10.1039/B921111J

    Article  CAS  Google Scholar 

  132. A. Kobayashi, Y. Yoshida, M. Yoshida, M. Kato, Mechanochromic Switching between Delayed Fluorescence and Phosphorescence of Luminescent Coordination Polymers Composed of Dinuclear Copper(I) Iodide Rhombic Cores. Chemistry 24(55), 14750–14759 (2018). https://doi.org/10.1002/chem.201802532

    Article  CAS  Google Scholar 

  133. X. Yan, X. Song, X. Mu, Y. Wang, Mechanochromic luminescence based on a phthalonitrile-bridging salophen zinc(ii) complex. New J. Chem. 43(40), 15886–15891 (2019). https://doi.org/10.1039/C9NJ03704G

    Article  CAS  Google Scholar 

  134. C. Zou, J. Lin, S. Suo, M. Xie, X. Chang, W. Lu, Palladium(ii) N-heterocyclic allenylidene complexes with extended intercationic Pd⋯Pd interactions and MMLCT phosphorescence. Chem. Commun. 54(42), 5319–5322 (2018). https://doi.org/10.1039/C8CC01652F

    Article  CAS  Google Scholar 

  135. A.R. Naziruddin, C.-S. Lee, W.-J. Lin, B.-J. Sun, K.-H. Chao, A.H.H. Chang, W.-S. Hwang, Platinum complexes bearing normal and mesoionic N-heterocyclic carbene based pincer ligands: syntheses, structures, and photo-functional attributes. Dalton Trans. 45(13), 5848–5859 (2016). https://doi.org/10.1039/C5DT04770F

    Article  CAS  Google Scholar 

  136. S.K. Mellerup, S. Wang, Boron-Doped Molecules for Optoelectronics. Trends Chem. 1(1), 77–89 (2019). https://doi.org/10.1016/j.trechm.2019.01.003

    Article  CAS  Google Scholar 

  137. M. Tsuchikawa, A. Takao, T. Funaki, H. Sugihara, K. Ono, Multifunctional organic dyes: anion-sensing and light-harvesting properties of curcumin boron complexes. RSC Adv. 7(58), 36612–36616 (2017). https://doi.org/10.1039/C7RA06778J

    Article  CAS  Google Scholar 

  138. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter. Nat. Photonics 13(10), 678–682 (2019). https://doi.org/10.1038/s41566-019-0476-5

    Article  CAS  Google Scholar 

  139. S. Gong, Q. Liu, X. Wang, B. Xia, Z. Liu, W. He, AIE-active organoboron complexes with highly efficient solid-state luminescence and their application as gas sensitive materials. Dalton Trans. 44(31), 14063–14070 (2015). https://doi.org/10.1039/C5DT01525A

    Article  CAS  Google Scholar 

  140. M. Ibarra-Rodrıguez, B.M. Muñoz-Flores, H.V.R. Dias, M. Sańchez, A. Gomez-Treviño, R. Santillan, N. Farfán, V.M. Jiménez-Pérez, Fluorescent Molecular Rotors of Organoboron Compounds from Schiff Bases: Synthesis, Viscosity, Reversible Thermochromism, Cytotoxicity, and Bioimaging Cells. J. Organomet. Chem. 82, 2375 (2017)

    Article  Google Scholar 

  141. Z. Jiang, Y. Chen, C. Yang, Y. Cao, Y. Tao, J. Qin, D. Ma, A Fully Diarylmethylene-Bridged Triphenylamine Derivative as Novel Host for Highly Efficient Green Phosphorescent OLEDs. Org. Lett. 11(7), 1503–1506 (2009). https://doi.org/10.1021/ol9001152

    Article  CAS  Google Scholar 

  142. A. Mahmood, Triphenylamine based dyes for dye sensitized solar cells: A review. Sol. Energy 123, 127–144 (2016). https://doi.org/10.1016/j.solener.2015.11.015

    Article  CAS  Google Scholar 

  143. J. Lee, S. Cho, C. Yang, Highly reproducible organic field-effect transistor from pseudo 3-dimensional triphenylamine-based amorphous conjugated copolymer. J. Mater. Chem. 21(24), 8528–8531 (2011). https://doi.org/10.1039/C1JM11515D

    Article  CAS  Google Scholar 

  144. J. Tagare, H. Ulla, M.N. Satyanarayan, S. Vaidyanathan, Synthesis, photophysical and electroluminescence studies of new triphenylamine-phenanthroimidazole based materials for organic light emitting diodes. J. Lumin. 194, 600–609 (2018). https://doi.org/10.1016/j.jlumin.2017.09.020

    Article  CAS  Google Scholar 

  145. L. Wenfeng, M. Hengchang, L. Con, M. Yuan, Q. Chunxuan, Z. Zhonwei, Y. Zengming, C. Haiying, L. Ziqiang, A self-assembled triphenylamine-based fluorescent chemosensor for selective detection of Fe3+ and Cu2+ ions in aqueous solution. RSC Adv. 5(9), 6869–6878 (2015). https://doi.org/10.1039/C4RA12025F

    Article  CAS  Google Scholar 

  146. P.S. Hariharan, N.S. Venkataramanan, D. Moon, S.P. Anthony, Self-Reversible Mechanochromism and Thermochromism of a Triphenylamine-Based Molecule: Tunable Fluorescence and Nanofabrication Studies. J. Phys. Chem. C 119, 9460 (2015)

    Article  CAS  Google Scholar 

  147. L. Zhu, Y. Zhao, Cyanostilbene-based intelligent organic optoelectronic materials. J. Mater. Chem. C 1(6), 1059–1065 (2013). https://doi.org/10.1039/C2TC00593J

    Article  CAS  Google Scholar 

  148. P. Xue, C. Zhang, K. Wang, M. Liang, T. Zhang, Alkyl chain-dependent cyano-stilbene derivative's molecular stacking, emission enhancement and fluorescent response to the mechanical force and thermal stimulus. Dyes Pigments 163, 516–524 (2019). https://doi.org/10.1016/j.dyepig.2018.12.036

    Article  CAS  Google Scholar 

  149. A. Gopinath, K. Ramamurthy, M. Subaraja, C. Selvaraju, A.S. Nasar, A3-Type star stilbene and cyanostilbene molecules: synthesis, fluorescence properties and bio-imaging application. New J. Chem. 42(12), 10243–10253 (2018). https://doi.org/10.1039/C8NJ00676H

    Article  CAS  Google Scholar 

  150. B. Kumari, M. Paramasivam, A. Dutta, S. Kanvah, Emission and Color Tuning of Cyanostilbenes and White Light Emission. ACS Omega 3(12), 17376–17385 (2018). https://doi.org/10.1021/acsomega.8b02775

    Article  CAS  Google Scholar 

  151. S.J. Yoon, J.W. Chung, J. Gierschner, K.S. Kim, M.G. Choi, D. Kim, S.Y. Park, Multistimuli two-color luminescence switching via different slip-stacking of highly fluorescent molecular sheets. J. Am. Chem. Soc. 132, 13675 (2010)

    Article  CAS  Google Scholar 

  152. B.-K. An, J. Gierschner, S.Y. Park, π-Conjugated Cyanostilbene Derivatives: A Unique Self-Assembly Motif for Molecular Nanostructures with Enhanced Emission and Transport. Acc. Chem. Res. 45(4), 544–554 (2012). https://doi.org/10.1021/ar2001952

    Article  CAS  Google Scholar 

  153. Y. Gong, Y. Zhang, W.Z. Yuan, J.Z. Sun, Y. Zhang, D–A Solid Emitter with Crowded and Remarkably Twisted Conformations Exhibiting Multifunctionality and Multicolor Mechanochromism. J. Phys. Chem. C 118, 10998 (2014)

    Article  CAS  Google Scholar 

  154. G. Zhang, A. Ding, Y. Zhang, L. Yang, L. Kong, X. Zhang, X. Tao, Y. Tian, J. Yang, Schiff base modified α-cyanostilbene derivative with aggregation-induced emission enhancement characteristics for Hg2+ detection. Sensors Actuators B Chem. 202, 209–216 (2014). https://doi.org/10.1016/j.snb.2014.05.057

    Article  CAS  Google Scholar 

  155. H. Zhao, Y. Wang, S. Harrington, L. Ma, S. Hu, X. Wu, H. Tang, M. Xue, Y. Wang, Remarkable substitution influence on the mechanochromism of cyanostilbene derivatives. RSC Adv. 6(71), 66477–66483 (2016). https://doi.org/10.1039/C6RA14707K

    Article  CAS  Google Scholar 

  156. B. Wang, C. Wei, Stimuli-responsive fluorescence switching of cyanostilbene derivatives: ultrasensitive water, acidochromism and mechanochromism. RSC Adv. 8(40), 22806–22812 (2018). https://doi.org/10.1039/C8RA03598A

    Article  CAS  Google Scholar 

  157. J. Jia, J. Wen, Multi-stimuli responsive fluorescence switching of D-A tetraphenylethylene functionalized cyanopyridine isomers. Tetrahedron Lett. 61(10), 151577 (2020). https://doi.org/10.1016/j.tetlet.2019.151577

    Article  CAS  Google Scholar 

  158. B. Zhao, B. Yang, X. Hu, B. Liu, Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α–cyanostilbenes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 199, 117–122 (2018). https://doi.org/10.1016/j.saa.2018.03.052

    Article  CAS  Google Scholar 

  159. S. Guo, J. Pan, J. Huang, L. Kong, J. Yang, Two AIEE-active α-cyanostilbene derivatives containing BF2 unit for detecting explosive picric acid in aqueous medium. RSC Adv. 9(45), 26043–26050 (2019). https://doi.org/10.1039/C9RA05116C

    Article  CAS  Google Scholar 

  160. R. Weitzenböck, Eine Synthese des Pyrens. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 34(1), 193–223 (1913). https://doi.org/10.1007/BF01517748

    Article  Google Scholar 

  161. C. Tang, H. Xu, F. Liu, Y.-J. Xia, W. Huang, Isolated large π systems in pyrene–fluorene derivatives for intramolecular through-space interaction in organic semiconductors. Org. Electron. 14(3), 782–789 (2013). https://doi.org/10.1016/j.orgel.2012.12.035

    Article  CAS  Google Scholar 

  162. N. Akira, Fluorescence Lifetime of Pyrene in Different Solvents. Bull. Chem. Soc. Jpn. 46(8), 2602–2604 (1973). https://doi.org/10.1246/bcsj.46.2602

    Article  Google Scholar 

  163. J. Hoche, H.-C. Schmitt, A. Humeniuk, I. Fischer, R. Mitrić, M.I.S. Röhr, The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer. Phys. Chem. Chem. Phys. 19(36), 25002–25015 (2017). https://doi.org/10.1039/C7CP03990E

    Article  CAS  Google Scholar 

  164. H. Lee, C.D. Sunesh, M.S. Subeesh, Y. Choe, Blue-light emitting electrochemical cells comprising pyrene-imidazole derivatives. Opt. Mater. 78, 44–51 (2018). https://doi.org/10.1016/j.optmat.2018.02.018

    Article  CAS  Google Scholar 

  165. D. Chercka, S.-J. Yoo, M. Baumgarten, J.-J. Kim, K. Müllen, Pyrene based materials for exceptionally deep blue OLEDs. J. Mater. Chem. C 2(43), 9083–9086 (2014). https://doi.org/10.1039/C4TC01801J

    Article  CAS  Google Scholar 

  166. S. Mukherjee, A.K. Paul, Pyrene Based Chemosensor for Selective Sensing of Fluoride in Aprotic and Protic Environment. J. Fluoresc. 25(5), 1461–1467 (2015). https://doi.org/10.1007/s10895-015-1636-8

    Article  CAS  Google Scholar 

  167. Y.-B. Gong, P. Zhang, Y.-R. Gu, J.-Q. Wang, M.-M. Han, C. Chen, X.-J. Zhan, Z.-L. Xie, B. Zou, Q. Peng, Z.-G. Chi, Z. Li, The Influence of Molecular Packing on the Emissive Behavior of Pyrene Derivatives: Mechanoluminescence and Mechanochromism. Adv. Opt. Mater. 6(16), 1800198 (2018). https://doi.org/10.1002/adom.201800198

    Article  CAS  Google Scholar 

  168. Y. Wu, X. Wen, Z. Fan, An AIE active pyrene based fluorescent probe for selective sensing Hg2+ and imaging in live cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 223, 117315 (2019). https://doi.org/10.1016/j.saa.2019.117315

    Article  CAS  Google Scholar 

  169. D.D. La, S.V. Bhosale, L.A. Jones, S.V. Bhosale, Tetraphenylethylene-Based AIE-Active Probes for Sensing Applications. ACS Appl. Mater. Interfaces 10(15), 12189–12216 (2018). https://doi.org/10.1021/acsami.7b12320

    Article  CAS  Google Scholar 

  170. J. Mei, N.L. Leung, R.T. Kwok, J.W. Lam, B.Z. Tang, Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 115, 11718 (2015)

    Article  CAS  Google Scholar 

  171. Y. Sagara, T. Kato, Brightly Tricolored Mechanochromic Luminescence from a Single-Luminophore Liquid Crystal: Reversible Writing and Erasing of Images. Angew. Chem. Int. Ed. 50, 9128 (2011)

    Article  CAS  Google Scholar 

  172. W. Yang, C. Liu, S. Lu, J. Du, Q. Gao, R. Zhang, Y. Liu, C. Yang, AIE-active smart cyanostyrene luminogens: polymorphism-dependent multicolor mechanochromism. J. Mater. Chem. C 6, 290 (2018)

    Article  CAS  Google Scholar 

  173. Y. Qi, N. Ding, Z. Wang, L. Xu, Y. Fang, Mechanochromic Wide-Spectrum Luminescence Based on a Monoboron Complex. ACS Appl. Mater. Interfaces 11(8), 8676–8684 (2019). https://doi.org/10.1021/acsami.8b21617

    Article  CAS  Google Scholar 

  174. X. Song, H. Yu, X. Yan, Y. Zhang, Y. Miao, K. Ye, Y. Wang, A luminescent benzothiadiazole-bridging bis(salicylaldiminato)zinc(ii) complex with mechanochromic and organogelation properties. Dalton Trans. 47(17), 6146–6155 (2018). https://doi.org/10.1039/C8DT00665B

    Article  CAS  Google Scholar 

  175. Y. Sagara, K. Kubo, T. Nakamura, N. Tamaoki, C. Weder, Temperature-Dependent Mechanochromic Behavior of Mechanoresponsive Luminescent Compounds. Chem. Mater. 29(3), 1273–1278 (2017). https://doi.org/10.1021/acs.chemmater.6b04720

    Article  CAS  Google Scholar 

  176. A. Lavrenova, D.W.R. Balkenende, Y. Sagara, S. Schrettl, Y.C. Simon, C. Weder, Mechano- and Thermoresponsive Photoluminescent Supramolecular Polymer. J. Am. Chem. Soc. 139, 4302 (2017)

    Article  CAS  Google Scholar 

  177. S. Mo, Q. Meng, S. Wan, Z. Su, H. Yan, B.Z. Tang, M. Yin, Tunable Mechanoresponsive Self-Assembly of an Amide-Linked Dyad with Dual Sensitivity of Photochromism and Mechanochromism. Adv. Funct. Mater. 27, 1701210 (2017)

    Article  Google Scholar 

  178. T. Sumi, R. Goseki, H. Otsuka, Tetraarylsuccinonitriles as mechanochromophores to generate highly stable luminescent carbon-centered radicals. Chem. Commun. 53(87), 11885–11888 (2017). https://doi.org/10.1039/C7CC06913H

    Article  CAS  Google Scholar 

  179. H. Sakai, T. Sumi, D. Aoki, R. Goseki, H. Otsuka, Thermally Stable Radical-Type Mechanochromic Polymers Based on Difluorenylsuccinonitrile. ACS Macro Lett. 7(11), 1359–1363 (2018). https://doi.org/10.1021/acsmacrolett.8b00755

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.R.G is thankful to Adichunchanagiri University order no. ACU/EST/Appt-PDF/731/2018-19 for financial support and we are also grateful to the management at Adichunchanagiri University.

Author information

Authors and Affiliations

Authors

Contributions

Y.R.G, and K.P designed research; K.P and K.B conducted review and editing; Y.R.G, and K.B Provided funding acquisition, project administration, and resources; and Y.R.G, and K.P wrote the Paper.

Corresponding author

Correspondence to K. Byrappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girish, Y.R., Prashantha, K. & Byrappa, K. Recent advances in aggregation-induced emission of mechanochromic luminescent organic materials. emergent mater. 4, 673–724 (2021). https://doi.org/10.1007/s42247-021-00203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00203-8

Keywords

Navigation