MoS2 nanoflower incorporated with Au/Pt nanoparticles for highly efficient hydrogen evolution reaction


Hydrogen evolution reaction (HER) by effective catalysts has been extensively investigated as a promising way to produce H2 as a clean and sustainable energy source. Previous studies have identified Pt as one of the most efficient catalysts due to the fast kinetics and the moderate hydrogen binding energy, while the high-cost of Pt restrains the practical applications. In this research, we present a hydrothermal method to fabricate the hybrid of nanoscale noble metals incorporated in the earth-abundant material MoS2. The results indicate that incorporation of a small amount of Au and Pt strongly enhances the HER performance compared with pure MoS2, which attributes to the enhanced electrical charge transfer, increased active sites, and reduced resistance. Especially, the electrocatalytic performance of the as-synthesized 5% weight loading Pt-MoS2 is comparable with the commercial 10% Pt/C catalyst, with a low overpotential of 103 mV vs. RHE at the current density of 10 mA cm−2 and Tafel slope of 56 mV dec–1. The sample also exhibits excellent durability, and the low amount of noble metal usage could reduce the cost to a large extent, making it more practical to be applied in hydrogen generation. The strategy to control the particle size with the various morphologies of the supporting material MoS2 may also be useful to develop other noble metal–based catalysts.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    J. Durst, C. Simon, A. Siebel, P.J. Rheinlander, T. Schuler, M. Hanzlik, J. Herranz, F. Hasche, H.A. Gasteiger, ECS Trans. 64, 3 (2014)

    Article  Google Scholar 

  2. 2.

    D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 28, 29 (2016)

    Article  Google Scholar 

  3. 3.

    B. Xia, T. Wang, X. Jiang, T. Zhang, J. Li, W. Xiao, P. Xi, D. Gao, D. Xue, J. Ding, ACS Energy Lett. 3, 9 (2018)

    Article  Google Scholar 

  4. 4.

    Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 28, 10 (2016)

    Google Scholar 

  5. 5.

    P. Liu, J. Ran, B. Xia, S. Xi, D. Gao, J. Wang, Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries. Nano-Micro Lett. 12, 68 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    M. Grzeszczuk, P. Poks, Electrochim. Acta 45, 25 (2000)

    Article  Google Scholar 

  7. 7.

    S. Bai, C. Wang, M. Deng, M. Gong, Y. Bai, J. Jiang, Y. Xiong, Angew. Chem. Int. Ed. 53, 45 (2014)

    Google Scholar 

  8. 8.

    R. Nazir, P. Fageria, M. Basu, S. Pande, J. Phys. Chem. C 121, 36 (2017)

    Article  Google Scholar 

  9. 9.

    H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, T. Zhang, Nat. Commun. 5, 1 (2014)

    CAS  Google Scholar 

  10. 10.

    L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Angew. Chem. Int. Ed. 56, 44 (2017)

    Google Scholar 

  11. 11.

    H. Yang, L. Shang, Q. Zhang, R. Shi, G.I.N. Waterhouse, L. Gu, T. Zhang, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  12. 12.

    L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature. 544, 7648 (2017)

    Article  Google Scholar 

  13. 13.

    Y. Yang, H. Wang, W. Qin, Y. Guo, H. Yao, J. Li, K. Shi, S. Ma, Journal of Colloid and. Interface Sci. 561 (2020)

  14. 14.

    B. Hinnemann, P.G. Moses, J. Bonde, K.P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, J.K. Nørskov, J. Am. Chem. Soc. 127, 15 (2005)

    Article  Google Scholar 

  15. 15.

    C. Tsai, K. Chan, J. K. Nørskov, and F. Abild-Pedersen, Surf. Sci. 640, (2015)

  16. 16.

    G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, L. Cao, J. Am. Chem. Soc. 138, 51 (2016)

    Google Scholar 

  17. 17.

    D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 13, 12 (2013)

    Article  Google Scholar 

  18. 18.

    T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science. 317, 5834 (2007)

    Article  Google Scholar 

  19. 19.

    Y. Huang, R.J. Nielsen, I. William, A. Goddard, M.P. Soriaga, J. Am. Chem. Soc. 137, 20 (2015)

    Google Scholar 

  20. 20.

    S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, X. Bi, S. Yang, Adv. Energy Mater. 8, 25 (2018)

    Google Scholar 

  21. 21.

    X. Chia, M. Pumera, Nat. Catal. 1, 12 (2018)

    Article  Google Scholar 

  22. 22.

    M. Yang, Z. Wang, W. Wang, C.-j. Liu, Nanoscale Res. Lett. 9, 1 (2014)

    Article  Google Scholar 

  23. 23.

    R. Devivaraprasad, R. Ramesh, N. Naresh, T. Kar, R.K. Singh, M. Neergat, Langmuir. 30, 29 (2014)

    Article  Google Scholar 

  24. 24.

    A. Jagminas, A. Naujokaitis, R. Žalnėravičius, V. Jasulaitiene, and G. Valušis, Applied Surface Science. 385, (2016)

  25. 25.

    Z. Zhang, Z. Wang, S.-W. Cao, C. Xue, J. Phys. Chem. C 117, 49 (2013)

    Google Scholar 

  26. 26.

    Z. Chen, K. Leng, X. Zhao, S. Malkhandi, W. Tang, B. Tian, L. Dong, L. Zheng, M. Lin, B.S. Yeo, K.P. Loh, Nat. Commun. 8, 1 (2017)

    Article  Google Scholar 

  27. 27.

    S. Ahmed, X. Ding, N. Bao, P. Bian, R. Zheng, Y. Wang, P.P. Murmu, J.V. Kennedy, R. Liu, H. Fan, K. Suzuki, J. Ding, J. Yi, Chem. Mater. 29, 9066 (2017)

  28. 28.

    S. S. Coutinho, M. S. Tavares, C. A. Barboza, N. F. Frazão, E. Moreira, and D. L. Azevedo, Journal of Physics and Chemistry of Solids. 111, (2017)

  29. 29.

    S. Shi, D. Gao, B. Xia, P. Liu, D. Xue, J. Mater. Chem. A 3, 48 (2015)

    Google Scholar 

  30. 30.

    G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, M. Dracinsky, P. Cigler, Nanoscale. 10, 8 (2018)

    Article  Google Scholar 

  31. 31.

    B.P. Vinayan, S. Ramaprabhu, Nanoscale. 5, 11 (2013)

    Article  Google Scholar 

  32. 32.

    T. Hu, K. Bian, G. Tai, T. Zeng, X. Wang, X. Huang, K. Xiong, K. Zhu, J. Phys. Chem. C 120, 45 (2016)

    Google Scholar 

  33. 33.

    G. Wang, J. Tao, Y. Zhang, S. Wang, X. Yan, C. Liu, F. Hu, Z. He, Z. Zuo, X. Yang, ACS Appl. Mater. Interfaces 10, 30 (2018)

    Google Scholar 

  34. 34.

    D.H. Youn, S. Han, J.Y. Kim, J.Y. Kim, H. Park, S.H. Choi, J.S. Lee, ACS Nano 8, 5 (2014)

    Article  Google Scholar 

  35. 35.

    Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Nano Lett. 11, 10 (2011)

    Google Scholar 

  36. 36.

    Y. Shi, J. Wang, C. Wang, T.-T. Zhai, W.-J. Bao, J.-J. Xu, X.-H. Xia, H.-Y. Chen, J. Am. Chem. Soc. 137, 23 (2015)

    Google Scholar 

  37. 37.

    J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. 8, 5 (2015)

    Google Scholar 

  38. 38.

    F. Li, L. Zhang, J. Li, X. Lin, X. Li, Y. Fang, J. Huang, W. Li, M. Tian, J. Jin, and R. Li, J. Power Sources. 292, (2015)

  39. 39.

    X. Sun, J. Dai, Y. Guo, C. Wu, F. Hu, J. Zhao, X. Zeng, Y. Xie, Nanoscale. 6, 14 (2014)

    Google Scholar 

  40. 40.

    X.-Y. Yu, Y. Feng, Y. Jeon, B. Guan, X.W. Lou, U. Paik, Adv. Mater. 28, 40 (2016)

    Article  Google Scholar 

  41. 41.

    J. Staszak-Jirkovský, C.D. Malliakas, P.P. Lopes, N. Danilovic, S.S. Kota, K.-C. Chang, B. Genorio, D. Strmcnik, V.R. Stamenkovic, M.G. Kanatzidis, N.M. Markovic, Nat. Mater. 15, 2 (2016)

    Article  Google Scholar 

  42. 42.

    S. Ahmed, J. Yi, Nano-Micro Lett. 9, 50 (2017)

  43. 43.

    W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 135, 45 (2013)

    Google Scholar 

  44. 44.

    H. Lv, Z. Xi, Z. Chen, S. Guo, Y. Yu, W. Zhu, Q. Li, X. Zhang, M. Pan, G. Lu, S. Mu, S. Sun, J. Am. Chem. Soc. 137, 18 (2015)

    Article  Google Scholar 

Download references


J. Yi received financial support from the ARC Future Fellowship (FT160100205).

Author information



Corresponding authors

Correspondence to Dewei Chu or Jiabao Yi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary information


(PDF 363 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, M., Kuo, YC., Chu, X. et al. MoS2 nanoflower incorporated with Au/Pt nanoparticles for highly efficient hydrogen evolution reaction. emergent mater. (2021).

Download citation


  • Noble metal nanoparticles
  • 2D transition metal dichalcogenides
  • Hydrogen evolution reaction
  • Hydrothermal synthesis