Skip to main content

Advertisement

Log in

Perspective and advanced development of lead–carbon battery for inhibition of hydrogen evolution

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

With the global demands for green energy utilization in automobiles, various internal combustion engines have been starting to use energy storage devices. Electrochemical energy storage systems, especially ultra-battery (lead–carbon battery), will meet this demand. The lead–carbon battery is one of the advanced featured systems among lead–acid batteries. The key limitation of lead–carbon battery is the sulfation of negative plates under a partial state of charge, which reduces the charging capacity and cycle life. To solve this problem, carbon as a kind of suitable materials is proposed to incorporate into the negative plates of the active materials for working under partial state of charge (PSOC) and high rate partial state of charge (HRPSOC) conditions. In this review, we discuss the properties of carbon materials and their function towards the inhibition of hydrogen evolution. Furthermore, the influence of grid composition, separator, and binder content on the electrochemical performance of the lead–carbon battery is also elaborately described. The main challenging issues of hydrogen evolution on lead–carbon batteries are discussed in different ways and perspective views to higher performance on future energy storage applications have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Sgouridis, M. Carbajales-Dale, D. Csala, M. Chiesa, U. Bardi, Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat. Energy. 4, 456–465 (2019)

    CAS  Google Scholar 

  2. H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)

    CAS  Google Scholar 

  3. S. Comello, S. Reichelstein, The emergence of cost effective battery storage. Nat. Commun. 10, 2038 (2019)

    Google Scholar 

  4. J.D. Hunt, E. Byers, Y. Wada, et al., Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat. Commun. 11, 947 (2020)

    CAS  Google Scholar 

  5. D. Bogdanov, J. Farfan, K. Sadovskaia, A. Aghahosseini, M. Child, A. Gulagi, A.S. Oyewo, L. de Souza Noel Simas Barbosa, C. Breyer, Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077 (2019)

    Google Scholar 

  6. G. Venkataramani, V. Ramalingam, K. Viswanathan, Harnessing free energy from nature for efficient operation of compressed air energy storage system and unlocking the potential of renewable power generation. Sci. Rep. 8, 9981 (2018)

    Google Scholar 

  7. F.A. Bohnes, J.S. Gregg, A. Laurent, Environmental impacts of future urban deployment of electric vehicles: assessment framework and case study of Copenhagen for 2016–2030. Environ. Sci. Technol. 51, 13995–14005 (2017)

    CAS  Google Scholar 

  8. H.C. Kim, T.J. Wallington, R. Arsenault, C. Bae, S. Ahn, J. Lee, Cradle-to-gate emissions from a commercial electric vehicle Li-ion battery: a comparative analysis. Environ. Sci. Technol. 50, 7715–7722 (2016)

    CAS  Google Scholar 

  9. Y. Hu, H. Cheng, S. Tao, Retired electric vehicle (ev) batteries: integrated waste management and research needs. Environ. Sci. Technol. 51, 10927–10929 (2017)

    CAS  Google Scholar 

  10. I. Concina, Z.H. Ibupoto, A. Vomiero, Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy. Mater. 7, 1700706 (2017)

  11. P. Müller-Buschbaum, M. Thelakkat, T.F. Fässler, M. Stutzmann, Hybrid photovoltaics – from Fundamentals towards application. Adv. Energy. Mater. 7, 1700248 (2017)

    Google Scholar 

  12. P.K. Nayak, S. Mahesh, H.J. Snaith, et al., Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater. 4, 269–285 (2019)

    CAS  Google Scholar 

  13. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X.T. Zu, S. Li, L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy. 201, 227–246 (2020)

    CAS  Google Scholar 

  14. M. Zhao, J. Su, Y. Zhao, P. Luo, F. Wang, W. Han, Y. Li, X. Zu, L. Qiao, T. Zhai, Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Adv. Funct. Mater. 30, 1909849 (2020)

    CAS  Google Scholar 

  15. J. Gan, J. He, R.L.Z. Hoye, A. Mavlonov, F. Raziq, J.L.M. Driscoll, X. Wu, S. Li, X. Zu, Y. Zhan, X. Zhang, L. Qiao, α-CsPbI3 colloidal quantum dots: synthesis, photodynamics and photovoltaic applications. ACS Energy Letters. 4, 1308–1320 (2019)

    CAS  Google Scholar 

  16. S. Zhang, H.Y. Xiao, S.M. Peng, G.X. Yang, Z.J. Liu, X.T. Zu, S. Li, D.J. Singh, L.W. Martin, L. Qiao, Band-gap reduction in superlattices: designing low-band-gap ferroelectrics. Phys. Rev. Appl. 10, 044004 (2018)

    CAS  Google Scholar 

  17. L. Qiao, S. Zhang, H.Y. Xiao, D.J. Singh, K.H.L. Zhang, Z.J. Liu, X.T. Zu, S. Li, orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications. J. Mater. Chem. C. 6, 1239–1247 (2018)

    CAS  Google Scholar 

  18. X.C. Huang, J.Y. Zhang, M. Wu, S. Zhang, H.Y. Xiao, W.Q. Han, T.-L. Lee, A. Tadich, D.-C. Qi, L. Qiao, L. Chen, K.H.L. Zhang, Electronic structure and p-type conduction mechanism of spinel cobaltite oxide thin films. Phys. Rev. B. 100, 115301 (2019)

    CAS  Google Scholar 

  19. L. Qiao, H.Y. Xiao, H.M. Meyer, J.N. Sun, C.M. Rouleau, A.A. Puretzky, D.B. Geohegan, I.N. Ivanov, M. Yoon, W.J. Weber, M.D. Biegalski, Nature of the band gap and origin of the electro−/photo-activity of Co3O4. J. Mater. Chem. C. 1, 4628–4633 (2013)

    CAS  Google Scholar 

  20. H.Y. Zhang, H. Yu, J.D. Dai, X.Y. Huang, C.M. Liu, Microstructure, photoluminescence and photocatalytic activity of ZnOMoS2TiO2 composite. Chin. J. Phys. 56, 3053–3061 (2018)

    CAS  Google Scholar 

  21. T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal. 2, 387–399 (2019)

    CAS  Google Scholar 

  22. Y. Wang, A. Vogel, M. Sachs, et al., Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy. 4, 746–760 (2019)

    CAS  Google Scholar 

  23. C. Xu, P.R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48, 3868–3902 (2019)

    CAS  Google Scholar 

  24. U. Ulmer, T. Dingle, P.N. Duchesne, et al., Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019)

    Google Scholar 

  25. S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ. Sci. 8, 731–759 (2015)

    CAS  Google Scholar 

  26. B. Khan, F. Raziq, M.B. Faheem, M.U. Farooq, S.H. FarmanAli, A. Ullah, A. Mavlonov, Y. Zhao, Z. Liu, H. Tian, H. Shen, X. Zu, S. Li, H. Xiao, X. Xiang, L. Qiao, Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. J. Hazard. Mater. 381, 120972 (2020)

    CAS  Google Scholar 

  27. F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, Q. Fu, W. Luo, H. Zeng, Z. Zheng, B. Khan, H. Shen, X. Zu, S. Li, L. Qiao, Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional co catalyst-free visible-light catalytic activities. Appl. Catal. B. Environ. 237, 1082–1090 (2018)

  28. F. Raziq, A. Hayat, M. Humayun, S.K.B. Mane, M.B. Faheem, A. Ali, Y. Zhao, S. Han, C. Cai, W. Li, D.C. Qi, J. Yi, X. Yu, M.B.H. Breese, F. Hassan, F. Ali, A. Mavlonov, K. Dhanabalan, X. Xiang, X. Zu, S. Li, L. Qiao, Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Appl. Catal. B. Environ. 270, 118867 (2020)

  29. F. Raziq, J. He, J. Gan, M. Humayun, M.B. Faheem, A. Iqbal, A. Hayat, S. Fazal, Visible –light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: beyond the conventional 4-electron mechanism. Appl. Catal. B: Environmental, Applied Catalysis B: Environmental 270, 118870 (2020)

    CAS  Google Scholar 

  30. P.G. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J. Paul Itié, P. Fabry, N. Guillou, T. Devic, I. Beurroies, P.L. Llewellyn, V.V. Speybroeck, C. Serre, G. Maurin, Mechanical energy storage performance of an aluminum fumarate metal–organic framework. Chem. Sci. 7, 446–450 (2016)

    CAS  Google Scholar 

  31. Q. Zhao, S. Stalin, C. Zhao, et al., Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 5, 229–252 (2020)

    CAS  Google Scholar 

  32. Z. Liu, X. Yuan, S. Zhang, et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11, 12 (2019)

    CAS  Google Scholar 

  33. X. Wu, J. He, M. Zhang, Z. Liu, S. Zhang, Y. Zhao, T. Li, F. Zhang, Z. Peng, N. Cheng, J. Zhang, X. Wen, Y. Xie, H. Tian, L. Cao, L. Bi, Y. Du, H. Zhang, J. Cheng, X. An, Y. Lei, H. Shen, J. Gan, X. Zu, S. Li, L. Qiao, Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano Energy. 6, 104247 (2020)

    Google Scholar 

  34. C. Cai, S. Han, W. Liu, K. Sun, L. Qiao, S. Li, X. Zu, Tuning catalytic performance by controlling reconstruction process in operando condition. Appl. Catal. B Environ. 260, 118103 (2020)

  35. Y. Zhao, M. Zhao, X. Ding, Z. Liu, H. Tian, H. Shen, X. Zu, S. Li, L. Qiao, One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chem. Eng. J. 73, 1132–1143 (2019)

    Google Scholar 

  36. Y. Zhao, C. Huang, Y. He, X. Wu, R. Ge, X. Zu, S. Li, L. Qiao, High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron. J. Power Sources. 456, 228023 (2020)

    CAS  Google Scholar 

  37. C. Cai, Y. Mi, S. Han, Q. Wang, W. Liu, X. Wu, Z. Zheng, X. Xia, L. Qiao, W. Zhou, X. Zu, Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochim. Acta. 295, 92–98 (2019)

    CAS  Google Scholar 

  38. C.M. Tian, M. Jiang, D. Tang, L. Qiao, H.Y. Xiao, F.E. Oropeza, J.P. Hofmann, E.J.M. Hensen, A. Tadich, W. Li, D.C. Qi, K.H.L. Zhang, Elucidating the electronic structure of CuWO4 thin films for enhanced photoelectrochemical water splitting. J. Mater. Chem. A. 7, 11895–11907 (2019)

    CAS  Google Scholar 

  39. G. Fu, X. Wen, S. Xi, Z. Chen, W. Li, J.Y. Zhang, A. Tadich, R. Wu, D.C. Qi, Y. Du, J. Cheng, K.H.L. Zhang, Tuning the electronic structure of NiO via Li doping for the fast oxygen evolution reaction. Chem. Mater. 31, 419–428 (2019)

    CAS  Google Scholar 

  40. M. Cui, X. Ding, X. Huang, X. Huang, Z. Shen, T.L. Lee, F.E. Oropeza, J.P. Hofmann, E.J.M. Hensen, K.H.L. Zhang, Ni3+-induced hole states enhance the oxygen evolution reaction activity of NixCo3–xO4 electrocatalysts. Chem. Mater. 31, 7618–7625 (2019)

    CAS  Google Scholar 

  41. M. Arbabzadeh, R. Sioshansi, J.X. Johnson, G.A. Keoleian, The role of energy storage in deep decarbonization of electricity production. Nat. Commun. 10, 3413 (2019)

    Google Scholar 

  42. D.H.S. Tan, A. Banerjee, Z. Chen, et al., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020)

    CAS  Google Scholar 

  43. M. Turgut, Gür, review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, energy environ. Sci. 11, 2696–2767 (2018)

    Google Scholar 

  44. M. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016)

    Google Scholar 

  45. H. Liu, X. Wang, D. Wu, Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain. Energy Fuels. 3, 1091–1149 (2019)

    CAS  Google Scholar 

  46. M. Liu, N.H. StevenTay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sust. Energ. Rev. 53, 1411–1432 (2016)

    CAS  Google Scholar 

  47. N. Wang, M. Li, H. Xiao, Z. Xiaotao, Q. Liang, L. LaCuOSe, A promising anisotropic thermoelectric material. Phys. Rev. Applied. 13, 024038 (2020)

    CAS  Google Scholar 

  48. X. Ding, S. Zhang, M. Zhao, Y. Xiang, K.H.L. Zhang, X. Zu, S. Li, L. Qiao, NbS2: A promising p-type Ohmic contact for two-dimensional materials. Phys. Rev. Applied. 12, 064061 (2019)

    CAS  Google Scholar 

  49. M. Li, N. Wang, M. Jiang, H. Xiao, H. Zhang, Z. Liu, X. Zu, L. Qiao, Improved thermoelectric performance of bilayer Bi2O2Se by the band convergence approach. J. Mater. Chem. C. 7, 11029–11039 (2019)

    CAS  Google Scholar 

  50. N. Wang, M. Li, H. Xiao, H. Gong, Z. Liu, X. Zu, L. Qiao, Optimizing the thermoelectric transport properties of Bi2O2Se monolayer via biaxial strain. Phys. Chem. Chem. Phys. 21, 15097–15105 (2019)

    CAS  Google Scholar 

  51. J. Yang, C. Hu, H. Wang, K. Yang, J.B. Liu, Review on the research of failure modes and mechanism for lead–acid batteries. Int. J. Energy Res. 41, 336–352 (2017)

    Google Scholar 

  52. A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5, 1402115 (2015)

    Google Scholar 

  53. V. Innocenzi, N.M. Ppolito, I. Michelis, M. Prisciandaro, F. Medici, F. Vegliò, A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J. Power Sources. 362, 202–218 (2017)

    CAS  Google Scholar 

  54. M. Rosa Palacín, Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47, 4924–4933 (2018)

    Google Scholar 

  55. G. Zub, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sust. Energ. Rev. 89, 292–308 (2018)

    Google Scholar 

  56. B. Boateng, G. Zhu, W. Lv, D. Chen, C. Feng, M. Waqas, S. Ali, K. Wen, W. He, An efficient, scalable route to robust PVDF-co-HFP/SiO2 separator for long-cycle lithium ion batteries. Phys. Status Solidi Rapid Res. Lett. 12, 1800319 (2018)

    Google Scholar 

  57. D. Chen, K. Wen, W. Lv, Z. Wei, W.H. Separator, Modification and functionalization for inhibiting the shuttle effect in lithium-sulfur batteries. Phys. Status Solidi Rapid Res. Lett. 2, 1800249 (2018)

    Google Scholar 

  58. Y. Li, J. Lu, Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2, 1370–1377 (2017)

    CAS  Google Scholar 

  59. C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.S. Hu, L. Chen, Solid-state sodium batteries. Adv.Energy Materials 18, 1703012 (2018)

    Google Scholar 

  60. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45, 1597–1615 (2004)

    CAS  Google Scholar 

  61. E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles. J. Power Sources. 168, 2–11 (2007)

    CAS  Google Scholar 

  62. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)

    CAS  Google Scholar 

  63. T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop, M. Winter, Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018)

    CAS  Google Scholar 

  64. G.M. Bettez, T.R. Hawkins, A.H. Strømman, Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548–4554 (2011)

    Google Scholar 

  65. M.A. Hannana, M.M. Hoqueb, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sust. Energ. Rev. 69, 771–789 (2017)

    Google Scholar 

  66. P.T. Moseley, D.A.J. Rand, Changes in the demands on automotive batteries require changes in battery design. J. Power Sources. 133, 104–109 (2004)

    CAS  Google Scholar 

  67. D. Pavlov, T. Rogachev, P. Nikolov, G. Petkova, Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries. J. Power Sources. 191, 58–75 (2009)

    CAS  Google Scholar 

  68. D. Pavlov, P. Nikolov, Lead–carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty. J. Electrochem. Soc. 159, A1215–A1225 (2012)

    CAS  Google Scholar 

  69. D. Pavlov, P. Nikolov, T. Rogachev, Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance. J. Power Sources. 196, 5155–5167 (2011)

    CAS  Google Scholar 

  70. L.T. Lam, R. Louey, Development of ultra-battery for hybrid electric vehicle applications. J. Power Sources. 158, 1140–1148 (2006)

    CAS  Google Scholar 

  71. L. T. Lam, R. Louey, N. P. Haigh, O. V. Lim, D. G. Vella, C. G. Phyland, and L. H. Vu, ALABC Project DP 1.1. Production and test of hybrid VRLA UltraBatteryTM designed specifically for high-rate partial-state-of charge operation, CSIRO energy technology, Investigation Rep. ET/IR967R, (2007), p. 38

  72. M.N.C. Ijomah, Electrochemical behavior of some Lead alloys. J. Electrochem. Soc. 134, 2960–2966 (1987)

    CAS  Google Scholar 

  73. D. Pavlov, B. Monakhov, Mechanism of action of Sn on the passivation phenomena in the lead-acid battery positive plate (Sn-free effect). J. Electrochem. Soc. 136, 27–33 (1989)

    CAS  Google Scholar 

  74. P. Baca, K. Micka, P. Krivík, K. Tonar, P. Toser, Study of the influence of carbon on the negative lead-acid battery electrodes. J. Power Sources. 196, 3988–3992 (2011)

    CAS  Google Scholar 

  75. L.T. Lama, R. Louey, N.P. Haigh, O.V. Lima, D.G. Vella, C.G. Phyland, L.H. Vu, J. Furukawa, T. Takada, D. Monma, T. Kano, VRLA Ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources. 174, 16–29 (2007)

    Google Scholar 

  76. D.P. Boden, D.V. Loosemore, M.A. Spence, T.D. Wojcinsk, Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation. J. Power Sources. 195, 4470–4493 (2010)

    CAS  Google Scholar 

  77. K.R. Bullock, Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling. J. Power Sources. 195, 4513–4519 (2010)

    CAS  Google Scholar 

  78. P.T. Moseley, R.F. Nelson, A.F. Hollenkamp, The role of carbon in valve-regulated lead–acid battery technology. J. Power Sources. 157, 3–10 (2006)

    CAS  Google Scholar 

  79. T. Tsuzuku, Anistropic electrical conduction in relation to the stacking disorder in graphite. Carbon 17, 293–299 (1979)

    CAS  Google Scholar 

  80. M. Saravanan, M. Ganesan, S. Ambalavanan, A modified lead-acid negative electrode for high rate partial state of charge applications. J. Electrochem. Soc. 159, A452–A458 (2012)

    CAS  Google Scholar 

  81. E. Ebner, D. Burow, A. Börger, M. Wark, P. Atanassova, J. Valenciano, Carbon blacks for the extension of the cycle life in flooded lead acid batteries for micro-hybrid applications. J. Power Sources. 239, 483e489 (2013)

    Google Scholar 

  82. T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018)

    Google Scholar 

  83. L.A. Yolshina, V.A. Yolshina, A.N. Yolshin, S.V. Plaksin, Novel lead-graphene and lead-graphite metallic composite materials for possible applications as positive electrode grid in lead-acid battery. J. Power Sources. 278, 87–97 (2015)

    CAS  Google Scholar 

  84. J. Settelein, J. Oehm, B. Bozkaya, H. Leicht, M. Wiener, G. Reichenauer, G. Sextlac, The external surface area of carbon additives as key to enhance the dynamic charge acceptance of lead-carbon electrodes. J. Energy Storage. 15, 196–204 (2018)

    Google Scholar 

  85. T. Sadhasivam, P. Gowthami, S.-H. Roh, H.-Y. Jung, Nanoconfinement and interfacial effect of Pb nanoparticles into nanoporous carbon as a longer-lifespan negative electrode material for hybrid lead–carbon battery. ACS Sustain. Chem. Eng. 8(23), 8868–8879 (2020)

    Google Scholar 

  86. H. Heidari, E. Habibi, Lead-doped carbon ceramic electrode as a renewable surface composite electrode for the preparation of lead dioxide film and detection of L-tyrosine. J. Iran. Chem. Soc. 15, 885–892 (2018)

    CAS  Google Scholar 

  87. M.R. Ganjali, N.M. Kazami, F. Faridboda, S. Khoeec, P. Norouzi, Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J. Hazard. Mater. 173, 415–419 (2010)

    CAS  Google Scholar 

  88. K. Dhanabalan, T. Sadhasivam, S.C. Kim, J.J. Eun, J. Shim, D. Jeon, S.-H. Roh, H.-Y. Jung, Novel core-shell structure of a lead-activated carbon (Pb@AC) for advanced lead-acid battery systems. J.Mater Sci: Mater Electron. 28(14), 10349–10356 (2017)

    CAS  Google Scholar 

  89. T. Sadhasivam, K. Dhanabalan, S.-H. Roh, S.-C. Kim, D. Jeon, J.-E. Jin, J. Shim, H.-Y. Jung, Preparation and characterization of Pb nanoparticles on mesoporous carbon nanostructure for advanced lead-acid battery applications. J.Mater Sci: Mater Electron. 28(7), 5669–5674 (2017)

    CAS  Google Scholar 

  90. M.A. Deyab, Hydrogen evolution inhibition by L-serine at negative electrode of a lead-acid battery. RSC.Adv. 5, 41365–41371 (2015)

    CAS  Google Scholar 

  91. J.F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed, S.E. Chun, E. Weber, D. Blackwood, E. Lynch-Bell, J. Gulakowski, C. Smith, D. Humphreys, An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J.Power Sources. 213, 255–264 (2012)

    CAS  Google Scholar 

  92. J. Guo, Y. Chai, R. Yuan, Z. Song, Z. Zou, Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sensors Actuators B. 155, 639–645 (2011)

    CAS  Google Scholar 

  93. J. Wang, J. Tang, Y. Xu, B. Ding, Z. Chang, Y. Wang, X. Hao, H. Dou, J.H. Kim, X. Zhang, Y. Yamauchi, Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy. 28, 232–240 (2016)

    CAS  Google Scholar 

  94. D.G. Enos, S.R. Ferreira, R. Shane, Sandia Report SAND 2011–8263, Understanding the function and performance of carbon-enhanced lead– acid batteries, (2011)

  95. J. Yin, N. Lin, Z. Lin, Y. Wang, J. Shi, J. Bao, H. Lin, W. Zhang, Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. J. Electro. Anal. Chem. 832, 266–274 (2019)

    CAS  Google Scholar 

  96. Evaluation of Lead/Carbon Devices for Utility Applications, SANDIA REPORT SAND2009-5537Unlimited Release (2009)

  97. B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery. J. Power Sources. 270, 332–341 (2014)

    CAS  Google Scholar 

  98. M. Shiomi, T. Funato, K. Nakamura, K. Takahashi, M. Tsubota, Effects of carbon in negative plates on cycle-life performance of valve-regulated lead/ acid batteries. J. Power Sources. 64, 147–152 (1997)

    CAS  Google Scholar 

  99. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 13, 17615–17624 (2011)

    CAS  Google Scholar 

  100. J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. CARBON. 48, 1731–1737 (2010)

    CAS  Google Scholar 

  101. P. Tong, R. Zhao, R. Zhang, F. Yi, G. Shi, A. Li, H. Chen, Characterization of lead (II)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation. J. Power Sources. 286, 91–102 (2015)

    CAS  Google Scholar 

  102. A. Jaiswal, S.C. Chalasani, The role of carbon in the negative plate of the lead–acid battery. J. Energy Storage. 1, 15–21 (2015)

    Google Scholar 

  103. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources. 101, 109–116 (2001)

    CAS  Google Scholar 

  104. M. Fernández, J. Valenciano, F. Trinidad, N. Munoz, The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications. J.Power Sources. 195, 4458–4469 (2010)

    Google Scholar 

  105. N.L. JianYin, Z. Lin, Y. Wang, J. Shi, J. Bao, H. Lin, W. Zhang, Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. J. Electroanal. Chem. 832, 266–274 (2019)

    Google Scholar 

  106. Z. Lin, W. Zhang, N. Lin, H. Lin, J. Shi, Long-life lead-acid battery for high-rate partial-state-of-charge operation enabled by a rice-husk-based activated carbon negative electrode additive. Chem. Select. 5, 2551–2555 (2020)

    CAS  Google Scholar 

  107. V. Naresh, S. Jindal, S.A. Gaffoor, S.K. Martha, Titanium dioxide-reduced graphene oxide hybrid as negative electrode additive for high performance lead-acid batteries. J. Energy Storage. 20, 204–212 (2018)

    Google Scholar 

  108. P. Krivík, K. Micka, P. Baca, K. Tonar, P. Toser, Effect of additives on the performance of negative lead-acid battery electrodes during formation and partial state of charge operation. J. Power Sources. 209, 15–19 (2012)

    Google Scholar 

  109. D.Y. Qu, Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109(2), 403–411 (2002)

    CAS  Google Scholar 

  110. B. Hong, X. Yu, L. Jiang, H. Xue, F. Liu, J. Li, Y. Liu, Hydrogen evolution inhibition with diethylenetriamine modification of activated carbon for a lead-acid battery. RSC Adv. 4, 33574–33577 (2014)

    CAS  Google Scholar 

  111. C. Portet, P.L. Taberna, P. Simon, E. Flahaut, Influence of carbon nanotube addition on carbon -carbon supercapacitors performances in organic electrolytes. J. Power Sources. 139, 371–378 (2005)

    CAS  Google Scholar 

  112. S.G. Real, M.E. Martins, Electrochemical behavior of single walled carbon nanotubes -hydrogen storage and hydrogen evolution. Int. J. Hydrogen Energy. 34, 8115–8126 (2009)

    Google Scholar 

  113. S. Venugobalan, Kinetics of hydrogen evolution reactions on lead-lead-alloy electrodes in sulfuric acid electrolyte with phosphoric acid and antimony additives. J. Power Sources. 48, 371–384 (1994)

    Google Scholar 

  114. J.R. Miller, Technical status of large electrical capacitors (Proc. 12th International Seminar on Battery Technology and Applications, Deerfield Beach, 1995)

    Google Scholar 

  115. H. Wang, H. Dai, Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088 (2013)

    CAS  Google Scholar 

  116. J. Farahmandi, D. Gideon, Proc. 6th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, 1996

  117. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, Electrode compositions for carbon power supercapacitors. J. Power Sources. 80, 149–155 (1999)

    CAS  Google Scholar 

  118. HANDBOOK OF BATTERIES David Linden Editor & Thomas B. Reddy Editor, 2nd c(1995)

  119. N. Böckenfeld, S.S. Jeong, M. Winter, S. Passerini, A. Balducci, Natural, cheap and environmentally friendly binder for supercapacitors. J.Power Sources. 221, 14–20 (2013)

    Google Scholar 

  120. A.L. Ferreira, A multi-layered approach for absorptive glass-mat separators. J. Power Sources. 78, 41–45 (1999)

    CAS  Google Scholar 

  121. Y. Nakayamaa, K. Kishimotoa, S. Sugiyamab, S. Sakaguchi, Micro-structural design and function of an improved absorptive glass mat (AGM) separator for valve-regulated lead–acid batteries. J.Power Sources. 107, 192–200 (2002)

    Google Scholar 

  122. T. Wada, T. Hirashima, Progress in polyethylene separators for lead–acid batteries. J. Power Sources. 107, 201–210 (2002)

    CAS  Google Scholar 

  123. J.R. Miller, Proceedings of the First Advanced Automotive Battery Conference, Las Vegas, NV, USA, (2001) (Paper 31, Session 6)

  124. M. Blecua, A.F. Romero, P. Ocon, E. Fatas, J. Valenciano, F. Trinidad, Improvement of the lead acid battery performance by the addition of graphitized carbon nanofibers together with a mix of organic expanders in the negative active material. J. Energy storage. 23, 106–115 (2019)

    Google Scholar 

  125. K. Fic, M. Meller, E. Frackowiak, Interfacial redox phenomena for enhanced aqueous supercapacitors. J. Electrochem.Soc. 162, A5140–A5147 (2015)

    CAS  Google Scholar 

  126. F. Wang, C. Hu, M. Zhou, K. Wang, J. Lian, J. Yan, S. Cheng, K. Jiang, Research progresses of cathodic hydrogen evolution in advanced lead–acid batteries. Sci. Bull. 61, 451–458 (2016)

    CAS  Google Scholar 

  127. K. Jurewicz, E. Frackowiak, F. Beguin, towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl.phys.A: Mater.Sci.Process .78, 981–987 (2004)

    CAS  Google Scholar 

  128. M. Sankaran, B. Viswanathan, The role of heteroatoms in carbon nanotubes for hydrogen storage. Carbon. 44, 2816–2821 (2006)

    CAS  Google Scholar 

  129. D.P. Boden, et al., ALABC Project N4.4, Optimization of additives to the negative active material for the purpose of extending the life of vrla batteries in high rate PSOC operation, Final Report, 2005

  130. J.P. Ritchie, S.M. Bachrach, Bond paths and bond properties of carbon- lithium bonds. J.Am. Chem.Soc. 109, 5910–5916 (1987)

    Google Scholar 

  131. D.Y. Qu, Studies of the activated carbons used in double-layer super capacitors. J. Power Sources. 109, 403–411 (2002)

    CAS  Google Scholar 

Download references

Funding

The work was financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20133514110003), the China Postdoctoral Science Foundation under Grant no. 2017M622404 and 2018M640906, and the National Natural Science Foundation of China (No. 21850410460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Qiao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanabalan, K., Raziq, F., Wang, Y. et al. Perspective and advanced development of lead–carbon battery for inhibition of hydrogen evolution. emergent mater. 3, 791–805 (2020). https://doi.org/10.1007/s42247-020-00146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00146-6

Keywords

Navigation