Abstract
With the global demands for green energy utilization in automobiles, various internal combustion engines have been starting to use energy storage devices. Electrochemical energy storage systems, especially ultra-battery (lead–carbon battery), will meet this demand. The lead–carbon battery is one of the advanced featured systems among lead–acid batteries. The key limitation of lead–carbon battery is the sulfation of negative plates under a partial state of charge, which reduces the charging capacity and cycle life. To solve this problem, carbon as a kind of suitable materials is proposed to incorporate into the negative plates of the active materials for working under partial state of charge (PSOC) and high rate partial state of charge (HRPSOC) conditions. In this review, we discuss the properties of carbon materials and their function towards the inhibition of hydrogen evolution. Furthermore, the influence of grid composition, separator, and binder content on the electrochemical performance of the lead–carbon battery is also elaborately described. The main challenging issues of hydrogen evolution on lead–carbon batteries are discussed in different ways and perspective views to higher performance on future energy storage applications have also been presented.
Similar content being viewed by others
References
S. Sgouridis, M. Carbajales-Dale, D. Csala, M. Chiesa, U. Bardi, Comparative net energy analysis of renewable electricity and carbon capture and storage. Nat. Energy. 4, 456–465 (2019)
H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)
S. Comello, S. Reichelstein, The emergence of cost effective battery storage. Nat. Commun. 10, 2038 (2019)
J.D. Hunt, E. Byers, Y. Wada, et al., Global resource potential of seasonal pumped hydropower storage for energy and water storage. Nat. Commun. 11, 947 (2020)
D. Bogdanov, J. Farfan, K. Sadovskaia, A. Aghahosseini, M. Child, A. Gulagi, A.S. Oyewo, L. de Souza Noel Simas Barbosa, C. Breyer, Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 10, 1077 (2019)
G. Venkataramani, V. Ramalingam, K. Viswanathan, Harnessing free energy from nature for efficient operation of compressed air energy storage system and unlocking the potential of renewable power generation. Sci. Rep. 8, 9981 (2018)
F.A. Bohnes, J.S. Gregg, A. Laurent, Environmental impacts of future urban deployment of electric vehicles: assessment framework and case study of Copenhagen for 2016–2030. Environ. Sci. Technol. 51, 13995–14005 (2017)
H.C. Kim, T.J. Wallington, R. Arsenault, C. Bae, S. Ahn, J. Lee, Cradle-to-gate emissions from a commercial electric vehicle Li-ion battery: a comparative analysis. Environ. Sci. Technol. 50, 7715–7722 (2016)
Y. Hu, H. Cheng, S. Tao, Retired electric vehicle (ev) batteries: integrated waste management and research needs. Environ. Sci. Technol. 51, 10927–10929 (2017)
I. Concina, Z.H. Ibupoto, A. Vomiero, Semiconducting metal oxide nanostructures for water splitting and photovoltaics. Adv. Energy. Mater. 7, 1700706 (2017)
P. Müller-Buschbaum, M. Thelakkat, T.F. Fässler, M. Stutzmann, Hybrid photovoltaics – from Fundamentals towards application. Adv. Energy. Mater. 7, 1700248 (2017)
P.K. Nayak, S. Mahesh, H.J. Snaith, et al., Photovoltaic solar cell technologies: analysing the state of the art. Nat Rev Mater. 4, 269–285 (2019)
A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto, X.T. Zu, S. Li, L. Qiao, A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy. 201, 227–246 (2020)
M. Zhao, J. Su, Y. Zhao, P. Luo, F. Wang, W. Han, Y. Li, X. Zu, L. Qiao, T. Zhai, Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Adv. Funct. Mater. 30, 1909849 (2020)
J. Gan, J. He, R.L.Z. Hoye, A. Mavlonov, F. Raziq, J.L.M. Driscoll, X. Wu, S. Li, X. Zu, Y. Zhan, X. Zhang, L. Qiao, α-CsPbI3 colloidal quantum dots: synthesis, photodynamics and photovoltaic applications. ACS Energy Letters. 4, 1308–1320 (2019)
S. Zhang, H.Y. Xiao, S.M. Peng, G.X. Yang, Z.J. Liu, X.T. Zu, S. Li, D.J. Singh, L.W. Martin, L. Qiao, Band-gap reduction in superlattices: designing low-band-gap ferroelectrics. Phys. Rev. Appl. 10, 044004 (2018)
L. Qiao, S. Zhang, H.Y. Xiao, D.J. Singh, K.H.L. Zhang, Z.J. Liu, X.T. Zu, S. Li, orbital controlled band gap engineering of tetragonal BiFeO 3 for optoelectronic applications. J. Mater. Chem. C. 6, 1239–1247 (2018)
X.C. Huang, J.Y. Zhang, M. Wu, S. Zhang, H.Y. Xiao, W.Q. Han, T.-L. Lee, A. Tadich, D.-C. Qi, L. Qiao, L. Chen, K.H.L. Zhang, Electronic structure and p-type conduction mechanism of spinel cobaltite oxide thin films. Phys. Rev. B. 100, 115301 (2019)
L. Qiao, H.Y. Xiao, H.M. Meyer, J.N. Sun, C.M. Rouleau, A.A. Puretzky, D.B. Geohegan, I.N. Ivanov, M. Yoon, W.J. Weber, M.D. Biegalski, Nature of the band gap and origin of the electro−/photo-activity of Co3O4. J. Mater. Chem. C. 1, 4628–4633 (2013)
H.Y. Zhang, H. Yu, J.D. Dai, X.Y. Huang, C.M. Liu, Microstructure, photoluminescence and photocatalytic activity of ZnOMoS2TiO2 composite. Chin. J. Phys. 56, 3053–3061 (2018)
T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal. 2, 387–399 (2019)
Y. Wang, A. Vogel, M. Sachs, et al., Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy. 4, 746–760 (2019)
C. Xu, P.R. Anusuyadevi, C. Aymonier, R. Luque, S. Marre, Nanostructured materials for photocatalysis. Chem. Soc. Rev. 48, 3868–3902 (2019)
U. Ulmer, T. Dingle, P.N. Duchesne, et al., Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 10, 3169 (2019)
S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.X. Guo, J. Tang, Visible-light driven heterojunction photocatalysts for water splitting – a critical review. Energy Environ. Sci. 8, 731–759 (2015)
B. Khan, F. Raziq, M.B. Faheem, M.U. Farooq, S.H. FarmanAli, A. Ullah, A. Mavlonov, Y. Zhao, Z. Liu, H. Tian, H. Shen, X. Zu, S. Li, H. Xiao, X. Xiang, L. Qiao, Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. J. Hazard. Mater. 381, 120972 (2020)
F. Raziq, M. Humayun, A. Ali, T. Wang, A. Khan, Q. Fu, W. Luo, H. Zeng, Z. Zheng, B. Khan, H. Shen, X. Zu, S. Li, L. Qiao, Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional co catalyst-free visible-light catalytic activities. Appl. Catal. B. Environ. 237, 1082–1090 (2018)
F. Raziq, A. Hayat, M. Humayun, S.K.B. Mane, M.B. Faheem, A. Ali, Y. Zhao, S. Han, C. Cai, W. Li, D.C. Qi, J. Yi, X. Yu, M.B.H. Breese, F. Hassan, F. Ali, A. Mavlonov, K. Dhanabalan, X. Xiang, X. Zu, S. Li, L. Qiao, Photocatalytic solar fuel production and environmental remediation through experimental and DFT based research on CdSe-QDs-coupled P-doped-g-C3N4 composites. Appl. Catal. B. Environ. 270, 118867 (2020)
F. Raziq, J. He, J. Gan, M. Humayun, M.B. Faheem, A. Iqbal, A. Hayat, S. Fazal, Visible –light photocatalytic activities for carbon nitride based 0D/2D/2D hybrid system: beyond the conventional 4-electron mechanism. Appl. Catal. B: Environmental, Applied Catalysis B: Environmental 270, 118870 (2020)
P.G. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J. Paul Itié, P. Fabry, N. Guillou, T. Devic, I. Beurroies, P.L. Llewellyn, V.V. Speybroeck, C. Serre, G. Maurin, Mechanical energy storage performance of an aluminum fumarate metal–organic framework. Chem. Sci. 7, 446–450 (2016)
Q. Zhao, S. Stalin, C. Zhao, et al., Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 5, 229–252 (2020)
Z. Liu, X. Yuan, S. Zhang, et al., Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 11, 12 (2019)
X. Wu, J. He, M. Zhang, Z. Liu, S. Zhang, Y. Zhao, T. Li, F. Zhang, Z. Peng, N. Cheng, J. Zhang, X. Wen, Y. Xie, H. Tian, L. Cao, L. Bi, Y. Du, H. Zhang, J. Cheng, X. An, Y. Lei, H. Shen, J. Gan, X. Zu, S. Li, L. Qiao, Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano Energy. 6, 104247 (2020)
C. Cai, S. Han, W. Liu, K. Sun, L. Qiao, S. Li, X. Zu, Tuning catalytic performance by controlling reconstruction process in operando condition. Appl. Catal. B Environ. 260, 118103 (2020)
Y. Zhao, M. Zhao, X. Ding, Z. Liu, H. Tian, H. Shen, X. Zu, S. Li, L. Qiao, One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chem. Eng. J. 73, 1132–1143 (2019)
Y. Zhao, C. Huang, Y. He, X. Wu, R. Ge, X. Zu, S. Li, L. Qiao, High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N, F co-doped hierarchical nanoporous carbon polyhedron. J. Power Sources. 456, 228023 (2020)
C. Cai, Y. Mi, S. Han, Q. Wang, W. Liu, X. Wu, Z. Zheng, X. Xia, L. Qiao, W. Zhou, X. Zu, Engineering ordered dendrite-like nickel selenide as electrocatalyst. Electrochim. Acta. 295, 92–98 (2019)
C.M. Tian, M. Jiang, D. Tang, L. Qiao, H.Y. Xiao, F.E. Oropeza, J.P. Hofmann, E.J.M. Hensen, A. Tadich, W. Li, D.C. Qi, K.H.L. Zhang, Elucidating the electronic structure of CuWO4 thin films for enhanced photoelectrochemical water splitting. J. Mater. Chem. A. 7, 11895–11907 (2019)
G. Fu, X. Wen, S. Xi, Z. Chen, W. Li, J.Y. Zhang, A. Tadich, R. Wu, D.C. Qi, Y. Du, J. Cheng, K.H.L. Zhang, Tuning the electronic structure of NiO via Li doping for the fast oxygen evolution reaction. Chem. Mater. 31, 419–428 (2019)
M. Cui, X. Ding, X. Huang, X. Huang, Z. Shen, T.L. Lee, F.E. Oropeza, J.P. Hofmann, E.J.M. Hensen, K.H.L. Zhang, Ni3+-induced hole states enhance the oxygen evolution reaction activity of NixCo3–xO4 electrocatalysts. Chem. Mater. 31, 7618–7625 (2019)
M. Arbabzadeh, R. Sioshansi, J.X. Johnson, G.A. Keoleian, The role of energy storage in deep decarbonization of electricity production. Nat. Commun. 10, 3413 (2019)
D.H.S. Tan, A. Banerjee, Z. Chen, et al., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. 15, 170–180 (2020)
M. Turgut, Gür, review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage, energy environ. Sci. 11, 2696–2767 (2018)
M. Lukatskaya, B. Dunn, Y. Gogotsi, Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647 (2016)
H. Liu, X. Wang, D. Wu, Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review. Sustain. Energy Fuels. 3, 1091–1149 (2019)
M. Liu, N.H. StevenTay, S. Bell, M. Belusko, R. Jacob, G. Will, W. Saman, F. Bruno, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sust. Energ. Rev. 53, 1411–1432 (2016)
N. Wang, M. Li, H. Xiao, Z. Xiaotao, Q. Liang, L. LaCuOSe, A promising anisotropic thermoelectric material. Phys. Rev. Applied. 13, 024038 (2020)
X. Ding, S. Zhang, M. Zhao, Y. Xiang, K.H.L. Zhang, X. Zu, S. Li, L. Qiao, NbS2: A promising p-type Ohmic contact for two-dimensional materials. Phys. Rev. Applied. 12, 064061 (2019)
M. Li, N. Wang, M. Jiang, H. Xiao, H. Zhang, Z. Liu, X. Zu, L. Qiao, Improved thermoelectric performance of bilayer Bi2O2Se by the band convergence approach. J. Mater. Chem. C. 7, 11029–11039 (2019)
N. Wang, M. Li, H. Xiao, H. Gong, Z. Liu, X. Zu, L. Qiao, Optimizing the thermoelectric transport properties of Bi2O2Se monolayer via biaxial strain. Phys. Chem. Chem. Phys. 21, 15097–15105 (2019)
J. Yang, C. Hu, H. Wang, K. Yang, J.B. Liu, Review on the research of failure modes and mechanism for lead–acid batteries. Int. J. Energy Res. 41, 336–352 (2017)
A. Vlad, N. Singh, C. Galande, P.M. Ajayan, Design considerations for unconventional electrochemical energy storage architectures. Adv. Energy Mater. 5, 1402115 (2015)
V. Innocenzi, N.M. Ppolito, I. Michelis, M. Prisciandaro, F. Medici, F. Vegliò, A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J. Power Sources. 362, 202–218 (2017)
M. Rosa Palacín, Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47, 4924–4933 (2018)
G. Zub, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithium-ion battery: state of the art and future perspectives. Renew. Sust. Energ. Rev. 89, 292–308 (2018)
B. Boateng, G. Zhu, W. Lv, D. Chen, C. Feng, M. Waqas, S. Ali, K. Wen, W. He, An efficient, scalable route to robust PVDF-co-HFP/SiO2 separator for long-cycle lithium ion batteries. Phys. Status Solidi Rapid Res. Lett. 12, 1800319 (2018)
D. Chen, K. Wen, W. Lv, Z. Wei, W.H. Separator, Modification and functionalization for inhibiting the shuttle effect in lithium-sulfur batteries. Phys. Status Solidi Rapid Res. Lett. 2, 1800249 (2018)
Y. Li, J. Lu, Metal–air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett. 2, 1370–1377 (2017)
C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.S. Hu, L. Chen, Solid-state sodium batteries. Adv.Energy Materials 18, 1703012 (2018)
M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45, 1597–1615 (2004)
E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder, Energy storage devices for future hybrid electric vehicles. J. Power Sources. 168, 2–11 (2007)
Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111, 3577–3613 (2011)
T. Placke, A. Heckmann, R. Schmuch, P. Meister, K. Beltrop, M. Winter, Perspective on performance, cost, and technical challenges for practical dual-ion batteries. Joule 2, 2528–2550 (2018)
G.M. Bettez, T.R. Hawkins, A.H. Strømman, Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ. Sci. Technol. 45, 4548–4554 (2011)
M.A. Hannana, M.M. Hoqueb, A. Mohamed, A. Ayob, Review of energy storage systems for electric vehicle applications: issues and challenges. Renew. Sust. Energ. Rev. 69, 771–789 (2017)
P.T. Moseley, D.A.J. Rand, Changes in the demands on automotive batteries require changes in battery design. J. Power Sources. 133, 104–109 (2004)
D. Pavlov, T. Rogachev, P. Nikolov, G. Petkova, Mechanism of action of electrochemically active carbons on the processes that take place at the negative plates of lead-acid batteries. J. Power Sources. 191, 58–75 (2009)
D. Pavlov, P. Nikolov, Lead–carbon electrode with inhibitor of sulfation for lead-acid batteries operating in the HRPSoC duty. J. Electrochem. Soc. 159, A1215–A1225 (2012)
D. Pavlov, P. Nikolov, T. Rogachev, Influence of carbons on the structure of the negative active material of lead-acid batteries and on battery performance. J. Power Sources. 196, 5155–5167 (2011)
L.T. Lam, R. Louey, Development of ultra-battery for hybrid electric vehicle applications. J. Power Sources. 158, 1140–1148 (2006)
L. T. Lam, R. Louey, N. P. Haigh, O. V. Lim, D. G. Vella, C. G. Phyland, and L. H. Vu, ALABC Project DP 1.1. Production and test of hybrid VRLA UltraBatteryTM designed specifically for high-rate partial-state-of charge operation, CSIRO energy technology, Investigation Rep. ET/IR967R, (2007), p. 38
M.N.C. Ijomah, Electrochemical behavior of some Lead alloys. J. Electrochem. Soc. 134, 2960–2966 (1987)
D. Pavlov, B. Monakhov, Mechanism of action of Sn on the passivation phenomena in the lead-acid battery positive plate (Sn-free effect). J. Electrochem. Soc. 136, 27–33 (1989)
P. Baca, K. Micka, P. Krivík, K. Tonar, P. Toser, Study of the influence of carbon on the negative lead-acid battery electrodes. J. Power Sources. 196, 3988–3992 (2011)
L.T. Lama, R. Louey, N.P. Haigh, O.V. Lima, D.G. Vella, C.G. Phyland, L.H. Vu, J. Furukawa, T. Takada, D. Monma, T. Kano, VRLA Ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources. 174, 16–29 (2007)
D.P. Boden, D.V. Loosemore, M.A. Spence, T.D. Wojcinsk, Optimization studies of carbon additives to negative active material for the purpose of extending the life of VRLA batteries in high-rate partial-state-of-charge operation. J. Power Sources. 195, 4470–4493 (2010)
K.R. Bullock, Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling. J. Power Sources. 195, 4513–4519 (2010)
P.T. Moseley, R.F. Nelson, A.F. Hollenkamp, The role of carbon in valve-regulated lead–acid battery technology. J. Power Sources. 157, 3–10 (2006)
T. Tsuzuku, Anistropic electrical conduction in relation to the stacking disorder in graphite. Carbon 17, 293–299 (1979)
M. Saravanan, M. Ganesan, S. Ambalavanan, A modified lead-acid negative electrode for high rate partial state of charge applications. J. Electrochem. Soc. 159, A452–A458 (2012)
E. Ebner, D. Burow, A. Börger, M. Wark, P. Atanassova, J. Valenciano, Carbon blacks for the extension of the cycle life in flooded lead acid batteries for micro-hybrid applications. J. Power Sources. 239, 483e489 (2013)
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11, 2696–2767 (2018)
L.A. Yolshina, V.A. Yolshina, A.N. Yolshin, S.V. Plaksin, Novel lead-graphene and lead-graphite metallic composite materials for possible applications as positive electrode grid in lead-acid battery. J. Power Sources. 278, 87–97 (2015)
J. Settelein, J. Oehm, B. Bozkaya, H. Leicht, M. Wiener, G. Reichenauer, G. Sextlac, The external surface area of carbon additives as key to enhance the dynamic charge acceptance of lead-carbon electrodes. J. Energy Storage. 15, 196–204 (2018)
T. Sadhasivam, P. Gowthami, S.-H. Roh, H.-Y. Jung, Nanoconfinement and interfacial effect of Pb nanoparticles into nanoporous carbon as a longer-lifespan negative electrode material for hybrid lead–carbon battery. ACS Sustain. Chem. Eng. 8(23), 8868–8879 (2020)
H. Heidari, E. Habibi, Lead-doped carbon ceramic electrode as a renewable surface composite electrode for the preparation of lead dioxide film and detection of L-tyrosine. J. Iran. Chem. Soc. 15, 885–892 (2018)
M.R. Ganjali, N.M. Kazami, F. Faridboda, S. Khoeec, P. Norouzi, Determination of Pb2+ ions by a modified carbon paste electrode based on multi-walled carbon nanotubes (MWCNTs) and nanosilica. J. Hazard. Mater. 173, 415–419 (2010)
K. Dhanabalan, T. Sadhasivam, S.C. Kim, J.J. Eun, J. Shim, D. Jeon, S.-H. Roh, H.-Y. Jung, Novel core-shell structure of a lead-activated carbon (Pb@AC) for advanced lead-acid battery systems. J.Mater Sci: Mater Electron. 28(14), 10349–10356 (2017)
T. Sadhasivam, K. Dhanabalan, S.-H. Roh, S.-C. Kim, D. Jeon, J.-E. Jin, J. Shim, H.-Y. Jung, Preparation and characterization of Pb nanoparticles on mesoporous carbon nanostructure for advanced lead-acid battery applications. J.Mater Sci: Mater Electron. 28(7), 5669–5674 (2017)
M.A. Deyab, Hydrogen evolution inhibition by L-serine at negative electrode of a lead-acid battery. RSC.Adv. 5, 41365–41371 (2015)
J.F. Whitacre, T. Wiley, S. Shanbhag, Y. Wenzhuo, A. Mohamed, S.E. Chun, E. Weber, D. Blackwood, E. Lynch-Bell, J. Gulakowski, C. Smith, D. Humphreys, An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J.Power Sources. 213, 255–264 (2012)
J. Guo, Y. Chai, R. Yuan, Z. Song, Z. Zou, Lead (II) carbon paste electrode based on derivatized multi-walled carbon nanotubes: application to lead content determination in environmental samples. Sensors Actuators B. 155, 639–645 (2011)
J. Wang, J. Tang, Y. Xu, B. Ding, Z. Chang, Y. Wang, X. Hao, H. Dou, J.H. Kim, X. Zhang, Y. Yamauchi, Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy. 28, 232–240 (2016)
D.G. Enos, S.R. Ferreira, R. Shane, Sandia Report SAND 2011–8263, Understanding the function and performance of carbon-enhanced lead– acid batteries, (2011)
J. Yin, N. Lin, Z. Lin, Y. Wang, J. Shi, J. Bao, H. Lin, W. Zhang, Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. J. Electro. Anal. Chem. 832, 266–274 (2019)
Evaluation of Lead/Carbon Devices for Utility Applications, SANDIA REPORT SAND2009-5537Unlimited Release (2009)
B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery. J. Power Sources. 270, 332–341 (2014)
M. Shiomi, T. Funato, K. Nakamura, K. Takahashi, M. Tsubota, Effects of carbon in negative plates on cycle-life performance of valve-regulated lead/ acid batteries. J. Power Sources. 64, 147–152 (1997)
Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys. Chem. Chem. Phys. 13, 17615–17624 (2011)
J. Yan, T. Wei, B. Shao, F. Ma, Z. Fan, M. Zhang, C. Zheng, Y. Shang, W. Qian, F. Wei, Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. CARBON. 48, 1731–1737 (2010)
P. Tong, R. Zhao, R. Zhang, F. Yi, G. Shi, A. Li, H. Chen, Characterization of lead (II)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation. J. Power Sources. 286, 91–102 (2015)
A. Jaiswal, S.C. Chalasani, The role of carbon in the negative plate of the lead–acid battery. J. Energy Storage. 1, 15–21 (2015)
J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources. 101, 109–116 (2001)
M. Fernández, J. Valenciano, F. Trinidad, N. Munoz, The use of activated carbon and graphite for the development of lead-acid batteries for hybrid vehicle applications. J.Power Sources. 195, 4458–4469 (2010)
N.L. JianYin, Z. Lin, Y. Wang, J. Shi, J. Bao, H. Lin, W. Zhang, Optimized lead carbon composite for enhancing the performance of lead-carbon battery under HRPSoC operation. J. Electroanal. Chem. 832, 266–274 (2019)
Z. Lin, W. Zhang, N. Lin, H. Lin, J. Shi, Long-life lead-acid battery for high-rate partial-state-of-charge operation enabled by a rice-husk-based activated carbon negative electrode additive. Chem. Select. 5, 2551–2555 (2020)
V. Naresh, S. Jindal, S.A. Gaffoor, S.K. Martha, Titanium dioxide-reduced graphene oxide hybrid as negative electrode additive for high performance lead-acid batteries. J. Energy Storage. 20, 204–212 (2018)
P. Krivík, K. Micka, P. Baca, K. Tonar, P. Toser, Effect of additives on the performance of negative lead-acid battery electrodes during formation and partial state of charge operation. J. Power Sources. 209, 15–19 (2012)
D.Y. Qu, Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109(2), 403–411 (2002)
B. Hong, X. Yu, L. Jiang, H. Xue, F. Liu, J. Li, Y. Liu, Hydrogen evolution inhibition with diethylenetriamine modification of activated carbon for a lead-acid battery. RSC Adv. 4, 33574–33577 (2014)
C. Portet, P.L. Taberna, P. Simon, E. Flahaut, Influence of carbon nanotube addition on carbon -carbon supercapacitors performances in organic electrolytes. J. Power Sources. 139, 371–378 (2005)
S.G. Real, M.E. Martins, Electrochemical behavior of single walled carbon nanotubes -hydrogen storage and hydrogen evolution. Int. J. Hydrogen Energy. 34, 8115–8126 (2009)
S. Venugobalan, Kinetics of hydrogen evolution reactions on lead-lead-alloy electrodes in sulfuric acid electrolyte with phosphoric acid and antimony additives. J. Power Sources. 48, 371–384 (1994)
J.R. Miller, Technical status of large electrical capacitors (Proc. 12th International Seminar on Battery Technology and Applications, Deerfield Beach, 1995)
H. Wang, H. Dai, Strongly coupled inorganic–nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 42, 3088 (2013)
J. Farahmandi, D. Gideon, Proc. 6th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, 1996
L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, Electrode compositions for carbon power supercapacitors. J. Power Sources. 80, 149–155 (1999)
HANDBOOK OF BATTERIES David Linden Editor & Thomas B. Reddy Editor, 2nd c(1995)
N. Böckenfeld, S.S. Jeong, M. Winter, S. Passerini, A. Balducci, Natural, cheap and environmentally friendly binder for supercapacitors. J.Power Sources. 221, 14–20 (2013)
A.L. Ferreira, A multi-layered approach for absorptive glass-mat separators. J. Power Sources. 78, 41–45 (1999)
Y. Nakayamaa, K. Kishimotoa, S. Sugiyamab, S. Sakaguchi, Micro-structural design and function of an improved absorptive glass mat (AGM) separator for valve-regulated lead–acid batteries. J.Power Sources. 107, 192–200 (2002)
T. Wada, T. Hirashima, Progress in polyethylene separators for lead–acid batteries. J. Power Sources. 107, 201–210 (2002)
J.R. Miller, Proceedings of the First Advanced Automotive Battery Conference, Las Vegas, NV, USA, (2001) (Paper 31, Session 6)
M. Blecua, A.F. Romero, P. Ocon, E. Fatas, J. Valenciano, F. Trinidad, Improvement of the lead acid battery performance by the addition of graphitized carbon nanofibers together with a mix of organic expanders in the negative active material. J. Energy storage. 23, 106–115 (2019)
K. Fic, M. Meller, E. Frackowiak, Interfacial redox phenomena for enhanced aqueous supercapacitors. J. Electrochem.Soc. 162, A5140–A5147 (2015)
F. Wang, C. Hu, M. Zhou, K. Wang, J. Lian, J. Yan, S. Cheng, K. Jiang, Research progresses of cathodic hydrogen evolution in advanced lead–acid batteries. Sci. Bull. 61, 451–458 (2016)
K. Jurewicz, E. Frackowiak, F. Beguin, towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl.phys.A: Mater.Sci.Process .78, 981–987 (2004)
M. Sankaran, B. Viswanathan, The role of heteroatoms in carbon nanotubes for hydrogen storage. Carbon. 44, 2816–2821 (2006)
D.P. Boden, et al., ALABC Project N4.4, Optimization of additives to the negative active material for the purpose of extending the life of vrla batteries in high rate PSOC operation, Final Report, 2005
J.P. Ritchie, S.M. Bachrach, Bond paths and bond properties of carbon- lithium bonds. J.Am. Chem.Soc. 109, 5910–5916 (1987)
D.Y. Qu, Studies of the activated carbons used in double-layer super capacitors. J. Power Sources. 109, 403–411 (2002)
Funding
The work was financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20133514110003), the China Postdoctoral Science Foundation under Grant no. 2017M622404 and 2018M640906, and the National Natural Science Foundation of China (No. 21850410460).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest.
Rights and permissions
About this article
Cite this article
Dhanabalan, K., Raziq, F., Wang, Y. et al. Perspective and advanced development of lead–carbon battery for inhibition of hydrogen evolution. emergent mater. 3, 791–805 (2020). https://doi.org/10.1007/s42247-020-00146-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42247-020-00146-6