Skip to main content
Log in

The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

In the last decade, organic–inorganic perovskite materials have drawn great attentions in both academic and industrial sectors because of their remarkable optoelectronic and photovoltaic properties. Various perovskite materials have been investigated for high-performance perovskite solar cells. In this short review, we aim to illustrate optimized photovoltaic properties of perovskite materials through compositional engineering of organic–inorganic hybrid perovskite materials. We firstly elaborate the progresses of compositional engineering for each of three components in AMX3 perovskite materials, and then highlight the optoelectronic and photovoltaic properties of the resultant perovskite materials. It was found that the compositional engineering of organic–inorganic hybrid perovskites plays an important role in device performance of perovskite solar cells. Lastly, the outlook and prospects of compositional engineering of organic–inorganic hybrid perovskite materials are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10(5), 391–402 (2015)

    CAS  Google Scholar 

  2. B. Wang, X. Xiao, T. Chen, Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale 6(21), 12287–12297 (2014)

    CAS  Google Scholar 

  3. N.G. Park, Perovskite solar cells: an emerging photovoltaic technology. Mater. Today 18(2), 65–72 (2015)

    CAS  Google Scholar 

  4. H.S. Jung, N.G. Park, Perovskite solar cells: from materials to devices. Small 11(1), 10–25 (2015)

    CAS  Google Scholar 

  5. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    CAS  Google Scholar 

  6. H. Kim, K.G. Lim, T.W. Lee, Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 9(1), 12–30 (2016)

    CAS  Google Scholar 

  7. J. Seo, J.H. Noh, S.I. Seok, Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49(3), 562–572 (2016)

    CAS  Google Scholar 

  8. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Perovskite as light harvester: a game changer in photovoltaics. Angew. Chem. Int. Ed. 53(11), 2812–2824 (2014)

    CAS  Google Scholar 

  9. P.P. Boix, K. Nonomura, N. Mathews, S.G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater. Today 17(1), 16–23 (2014)

    CAS  Google Scholar 

  10. G. Mathiazhagan, L. Wagner, S. Bogati, K.B.Y. Ünal, D. Bogachuk, T. Kroyer, S. Mastroianni, A. Hinsch, Double-mesoscopic hole-transport-material-free perovskite solar cells: overcoming charge-transport limitation by sputtered ultrathin Al2O3 isolating layer. ACS Appl. Nano Mater. 3(3), 2463–2471 (2020)

    CAS  Google Scholar 

  11. J. Liu, D. Wang, K. Chen, J. Kang, J. Yang, J. Zhang, H. Zhang, Enhanced photovoltaic performance and reduced hysteresis in hole-conductor-free, printable mesoscopic perovskite solar cells based on melamine hydroiodide modified MAPbI3. Sol. Energy 206, 548–554 (2020)

    CAS  Google Scholar 

  12. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2014)

    CAS  Google Scholar 

  13. Y.J. Jeon, S. Lee, R. Kang, J.E. Kim, J.S. Yeo, S.H. Lee, S.S. Kim, J.M. Yun, D.Y. Kim, Planar heterojunction perovskite solar cells with superior reproducibility. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

  14. W. Xu, Y. Gao, W. Ming, F. He, J. Li, X.H. Zhu, F. Kang, J. Li, G. Wei, Suppressing defects-induced nonradiative recombination for efficient perovskite solar cells through green antisolvent engineering. Adv. Mater. 32(38), 2003965 (2020)

    CAS  Google Scholar 

  15. W. Xu, L. Zheng, T. Zhu, L. Liu, X. Gong, Bulk heterojunction perovskite solar cells incorporated with Zn2SnO4 nanoparticles as the electron acceptors. ACS Appl. Mater. Interfaces 11(37), 34020–34029 (2019)

    CAS  Google Scholar 

  16. X. Huang, K. Wang, C. Yi, T. Meng, X. Gong, Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT: PSS hole transport layer. Adv. Energy Mater. 6(3), 1501773 (2016)

    Google Scholar 

  17. C. Liu, K. Wang, P. Du, C. Yi, T. Meng, X. Gong, Efficient solution-processed bulk heterojunction perovskite hybrid solar cells. Adv. Energy Mater. 5(12), 1402024 (2015)

    Google Scholar 

  18. K. Wang, C. Liu, C. Yi, L. Chen, J. Zhu, R. Weiss, X. Gong, Efficient perovskite hybrid solar cells via ionomer interfacial engineering. Adv. Funct. Mater. 25(44), 6875–6884 (2015)

    CAS  Google Scholar 

  19. F. Serrano-Sanchez, J. Conesa, J. Rodrigues, C. Marini, J. Martínez, J. Alonso, Divalent chromium in the octahedral positions of the novel hybrid perovskites CH3NH3Pb1-xCrx(Br, Cl)3 (x = 0.25, 0.5): induction of narrow bands inside the bandgap. J. Alloys Compd. 821, 153414 (2020)

    CAS  Google Scholar 

  20. H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang, S. Yuan, Z. Yang, Z. Liu, S. Liu, A novel anion doping for stable CsPbI2Br perovskite solar cells with an efficiency of 15.56% and an open circuit voltage of 1.30 V. Adv. Energy Mater. 9(40), 1902279 (2019)

    CAS  Google Scholar 

  21. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng, F. Huang, A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 10(12), 2509–2515 (2017)

    CAS  Google Scholar 

  22. L. Calio, S. Kazim, M. Graetzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angew. Chem. Int. Ed. 55(47), 14522–14545 (2016)

    CAS  Google Scholar 

  23. Z. Chen, B. Turedi, A.Y. Alsalloum, C. Yang, X. Zheng, I. Gereige, A. AlSaggaf, O.F. Mohammed, O.M. Bakr, Single-crystal MAPbI3 perovskite solar cells exceeding 21% power conversion efficiency. ACS Energy Lett. 4(6), 1258–1259 (2019)

    CAS  Google Scholar 

  24. H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536(7616), 312–316 (2016)

    CAS  Google Scholar 

  25. L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M.R. Wasielewski, C.C. Stoumpos, M.G. Kanatzidis, Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140(10), 3775–3783 (2018)

    CAS  Google Scholar 

  26. T.C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7(8), 2518–2534 (2014)

    CAS  Google Scholar 

  27. S. Luo, W.A. Daoud, Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. J. Mater. Chem. A 3(17), 8992–9010 (2015)

    CAS  Google Scholar 

  28. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506–514 (2014)

    CAS  Google Scholar 

  29. J. Albero, A.M. Asiri, H. García, Influence of the composition of hybrid perovskites on their performance in solar cells. J. Mater. Chem. A 4(12), 4353–4364 (2016)

    CAS  Google Scholar 

  30. G. Giorgi, K. Yamashita, Organic–inorganic halide perovskites: an ambipolar class of materials with enhanced photovoltaic performances. J. Mater. Chem. A 3(17), 8981–8991 (2015)

    CAS  Google Scholar 

  31. G.R. Kumar, A.D. Savariraj, S. Karthick, S. Selvam, B. Balamuralitharan, H.J. Kim, K.K. Viswanathan, M. Vijaykumar, K. Prabakar, Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys. Chem. Chem. Phys. 18(10), 7284–7292 (2016)

    Google Scholar 

  32. C.C. Stoumpos, M.G. Kanatzidis, The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48(10), 2791–2802 (2015)

    CAS  Google Scholar 

  33. R.H. Mitchell, M.D. Welch, A.R. Chakhmouradian, Nomenclature of the perovskite supergroup: a hierarchical system of classification based on crystal structure and composition. Mineral. Mag. 81(3), 411–461 (2017)

    CAS  Google Scholar 

  34. C.C. Stoumpos, M.G. Kanatzidis, Halide perovskites: poor Man’s high-performance semiconductors. Adv. Mater. 28(28), 5778–5793 (2016)

    CAS  Google Scholar 

  35. K. Wang, L. Zheng, T. Zhu, X. Yao, C. Yi, X. Zhang, Y. Cao, L. Liu, W. Hu, X. Gong, Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy 61, 352–360 (2019)

    CAS  Google Scholar 

  36. W. Xu, L. Zheng, X. Zhang, Y. Cao, T. Meng, D. Wu, L. Liu, W. Hu, X. Gong, Efficient perovskite solar cells fabricated by Co partially substituted hybrid perovskite. Adv. Energy Mater. 8(14), 1703178 (2018)

    Google Scholar 

  37. P.P. Boix, S. Agarwala, T.M. Koh, N. Mathews, S.G. Mhaisalkar, Perovskite solar cells: beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6(5), 898–907 (2015)

    CAS  Google Scholar 

  38. D.H. Kang, N.G. Park, On the current–voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Adv. Mater. 31(34), 1805214 (2019)

    Google Scholar 

  39. T. Zhu, Y. Yang, X. Gong, Recent advancements and challenges for low-toxicity perovskite materials. ACS Appl. Mater. Interfaces 12(24), 26776–26811 (2020)

    CAS  Google Scholar 

  40. T. Meng, C. Yi, L. Liu, A. Karim, X. Gong, Enhanced thermoelectric properties of two-dimensional conjugated polymers. Emergent Mater. 1(1–2), 67–76 (2018)

  41. T. Zhu, L. Zheng, C. Yi, T. Yu, Y. Cao, L. Liu, X. Gong, Two-dimensional conjugated polymeric nanocrystals for organic electronics. ACS Appl. Electron. Mater. 1(8), 1458–1464 (2019)

    CAS  Google Scholar 

  42. Y. Zhou, Y. Zhao, Chemical stability and instability of inorganic halide perovskites. Energy Environ. Sci. 12(5), 1495–1511 (2019)

    CAS  Google Scholar 

  43. B.W. Park, S.I. Seok, Intrinsic instability of inorganic–organic hybrid halide perovskite materials. Adv. Mater. 31(20), 1805337 (2019)

    Google Scholar 

  44. Y. Fu, M.P. Hautzinger, Z. Luo, F. Wang, D. Pan, M.M. Aristov, I.A. Guzei, A. Pan, X. Zhu, S. Jin, Incorporating large A cations into lead iodide perovskite cages: relaxed Goldschmidt tolerance factor and impact on exciton–phonon interaction. ACS Cent. Sci. 5(8), 1377–1386 (2019)

    CAS  Google Scholar 

  45. T. Matsui, T. Yamamoto, T. Nishihara, R. Morisawa, T. Yokoyama, T. Sekiguchi, T. Negami, Compositional engineering for thermally stable, highly efficient perovskite solar cells exceeding 20% power conversion efficiency with 85 ° C/85% 1000 h stability. Adv. Mater. 31(10), 1806823 (2019)

    Google Scholar 

  46. N. Li, Z. Zhu, C.C. Chueh, H. Liu, B. Peng, A. Petrone, X. Li, L. Wang, A.K.Y. Jen, Mixed cation FAxPEA1–xPbI3 with enhanced phase and ambient stability toward high-performance perovskite solar cells. Adv. Energy Mater. 7(1), 1601307 (2017)

    Google Scholar 

  47. T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, M.D. McGehee, Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5(23), 11483–11500 (2017)

    CAS  Google Scholar 

  48. Q. Han, S.H. Bae, P. Sun, Y.T. Hsieh, Y. Yang, Y.S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li, Single crystal formamidinium lead iodide (FAPbI3): insight into the structural, optical, and electrical properties. Adv. Mater. 28(11), 2253–2258 (2016)

    CAS  Google Scholar 

  49. Y. Li, F.Z. Liu, M. Waqas, T.L. Leung, H.W. Tam, X.Q. Lan, B. Tu, W. Chen, A.B. Djurišić, Z.B. He, Formamidinium-based lead halide perovskites: structure, properties, and fabrication methodologies. Small Methods 2(7), 1700387 (2018)

    Google Scholar 

  50. T.M. Koh, K. Fu, Y. Fang, S. Chen, T. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118(30), 16458–16462 (2014)

    CAS  Google Scholar 

  51. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu, G. Cui, NH2CH=NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485–1491 (2014)

    CAS  Google Scholar 

  52. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    CAS  Google Scholar 

  53. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)

    CAS  Google Scholar 

  54. G.S. Shin, Y. Zhang, N.-G. Park, Stability of precursor solution for perovskite solar cell: mixture (FAI+ PbI2) versus synthetic FAPbI3 crystal. ACS Appl. Mater. Interfaces 12(13), 15167–15174 (2020)

    CAS  Google Scholar 

  55. G.E. Eperon, G.M. Paterno, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3(39), 19688–19695 (2015)

    CAS  Google Scholar 

  56. M. Kulbak, D. Cahen, G. Hodes, How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6(13), 2452–2456 (2015)

    CAS  Google Scholar 

  57. Q. Ma, S. Huang, X. Wen, M.A. Green, A.W. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv. Energy Mater. 6(7), 1502202 (2016)

    Google Scholar 

  58. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016)

    CAS  Google Scholar 

  59. X. Liu, J. Han, Y. Li, B. Cao, C. Sun, H. Yin, Y. Shi, M. Jin, C. Liu, M. Sun, Ultrafast carrier dynamics in all-inorganic CsPbBr3 perovskite across the pressure-induced phase transition. Opt. Express 27(16), A995–A1003 (2019)

    CAS  Google Scholar 

  60. H. Chen, S. Xiang, W. Li, H. Liu, L. Zhu, S. Yang, Inorganic perovskite solar cells: a rapidly growing field. Sol. RRL 2(2), 1700188 (2018)

  61. K. Miyata, T.L. Atallah, X.Y. Zhu, Lead halide perovskites: crystal-liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 3(10), e1701469 (2017)

    Google Scholar 

  62. J. Tian, J. Wang, Q. Xue, T. Niu, L. Yan, Z. Zhu, N. Li, C.J. Brabec, H.L. Yip, Y. Cao, Composition engineering of all-inorganic perovskite film for efficient and operationally stable solar cells. Adv. Funct. Mater. 30(28), 2001764 (2020)

    CAS  Google Scholar 

  63. N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014)

    CAS  Google Scholar 

  64. J. Liu, Y. Shirai, X. Yang, Y. Yue, W. Chen, Y. Wu, A. Islam, L. Han, High-quality mixed-organic-cation perovskites from a phase-pure non-stoichiometric intermediate (FAI)1− x-PbI2 for solar cells. Adv. Mater. 27(33), 4918–4923 (2015)

    CAS  Google Scholar 

  65. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015)

    CAS  Google Scholar 

  66. D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P.C. Baena, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016)

    Google Scholar 

  67. H. Choi, J. Jeong, H.B. Kim, S. Kim, B. Walker, G.H. Kim, J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7, 80–85 (2014)

    CAS  Google Scholar 

  68. J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho, N.G. Park, Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015)

    Google Scholar 

  69. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S.M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016)

    CAS  Google Scholar 

  70. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    CAS  Google Scholar 

  71. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014)

    CAS  Google Scholar 

  72. B. Kim, S.I. Seok, Molecular aspects of organic cations affecting the humidity stability of perovskites. Energy Environ. Sci. 13(3), 805–820 (2020)

    CAS  Google Scholar 

  73. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    CAS  Google Scholar 

  74. R. Singh, S. Sandhu, H. Yadav, J.J. Lee, Stable triple-cation (Cs+–MA+–FA+) perovskite powder formation under ambient conditions for hysteresis-free high-efficiency solar cells. ACS Appl. Mater. Interfaces 11(33), 29941–29949 (2019)

    CAS  Google Scholar 

  75. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    CAS  Google Scholar 

  76. Y. Hu, M.F. AygÜler, M.L. Petrus, T. Bein, P. Docampo, Impact of rubidium and cesium cations on the moisture stability of multiple-cation mixed-halide perovskites. ACS Energy Lett. 2(10), 2212–2218 (2017)

    CAS  Google Scholar 

  77. H.J. Snaith, Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17(5), 372–376 (2018)

    CAS  Google Scholar 

  78. Q. Chen, N. De Marco, Y.M. Yang, T.B. Song, C.C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10(3), 355–396 (2015)

    CAS  Google Scholar 

  79. D. Mitzi, S. Wang, C. Feild, C. Chess, A. Guloy, Conducting layered organic-inorganic halides containing<110>-oriented perovskite sheets. Science 267(5203), 1473–1476 (1995)

    CAS  Google Scholar 

  80. D.B. Mitzi, C. Feild, W. Harrison, A. Guloy, Conducting tin halides with a layered organic-based perovskite structure. Nature 369(6480), 467–469 (1994)

    CAS  Google Scholar 

  81. Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. 55(10), 3447–3450 (2016)

    CAS  Google Scholar 

  82. F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014)

    CAS  Google Scholar 

  83. F. Hao, C.C. Stoumpos, P. Guo, N. Zhou, T.J. Marks, R.P. Chang, M.G. Kanatzidis, Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137(35), 11445–11452 (2015)

    CAS  Google Scholar 

  84. P. Zhu, C. Chen, S. Gu, R. Lin, J. Zhu, CsSnI3 solar cells via an evaporation-assisted solution method. Sol. RRL 2(4), 1700224 (2018)

  85. W. Ke, C.C. Stoumpos, I. Spanopoulos, L. Mao, M. Chen, M.R. Wasielewski, M.G. Kanatzidis, Efficient lead-free solar cells based on hollow {en} MASnI3 perovskites. J. Am. Chem. Soc. 139(41), 14800–14806 (2017)

    CAS  Google Scholar 

  86. W. Ke, C.C. Stoumpos, M.G. Kanatzidis, “Unleaded” perovskites: status quo and future prospects of tin-based perovskite solar cells. Adv. Mater. 31(47), 1803230 (2019)

    CAS  Google Scholar 

  87. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

    CAS  Google Scholar 

  88. D. Mitzi, K. Liang, Synthesis, resistivity, and thermal properties of the cubic perovskite NH2CH=NH2SnI3and related systems. J. Solid State Chem. 134(2), 376–381 (1997)

    CAS  Google Scholar 

  89. F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv. Funct. Mater. 26(20), 3417–3423 (2016)

    CAS  Google Scholar 

  90. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014)

    CAS  Google Scholar 

  91. T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, A.C. Grimsdale, S.G. Mhaisalkar, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015)

    CAS  Google Scholar 

  92. S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S.I. Seok, Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016)

    CAS  Google Scholar 

  93. L. Peedikakkandy, P. Bhargava, Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites. RSC Adv. 6(24), 19857–19860 (2016)

    CAS  Google Scholar 

  94. M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014)

    CAS  Google Scholar 

  95. L.Y. Huang, W.R. Lambrecht, Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3. Phys. Rev. B 88(16), 165203 (2013)

    Google Scholar 

  96. L.Y. Huang, W.R. Lambrecht, Lattice dynamics in perovskite halides CsSnX3 with X = I, Br, Cl. Phys. Rev. B 90(19), 195201 (2014)

    Google Scholar 

  97. N. Wang, Y. Zhou, M.G. Ju, H.F. Garces, T. Ding, S. Pang, X.C. Zeng, N.P. Padture, X.W. Sun, Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films. Adv. Energy Mater. 6(24), 1601130 (2016)

    Google Scholar 

  98. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5(6), 1004–1011 (2014)

    CAS  Google Scholar 

  99. F. Hao, C.C. Stoumpos, R.P. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094–8099 (2014)

    CAS  Google Scholar 

  100. F. Zuo, S.T. Williams, P.W. Liang, C.C. Chueh, C.Y. Liao, A.K.Y. Jen, Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells. Adv. Mater. 26(37), 6454–6460 (2014)

    CAS  Google Scholar 

  101. Q. Shen, Y. Ogomi, J. Chang, T. Toyoda, K. Fujiwara, K. Yoshino, K. Sato, K. Yamazaki, M. Akimoto, Y. Kuga, Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. J. Mater. Chem. A 3(17), 9308–9316 (2015)

    CAS  Google Scholar 

  102. A. Mancini, P. Quadrelli, C. Milanese, M. Patrini, G. Guizzetti, L. Malavasi, CH3NH3SnxPb1–xBr3 hybrid perovskite solid solution: synthesis, structure, and optical properties. Inorg. Chem. 54(18), 8893–8895 (2015)

    CAS  Google Scholar 

  103. M.T. Klug, A. Osherov, A.A. Haghighirad, S.D. Stranks, P.R. Brown, S. Bai, J.T.-W. Wang, X. Dang, V. Bulović, H.J. Snaith, Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10(1), 236–246 (2017)

    CAS  Google Scholar 

  104. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27(35), 5176–5183 (2015)

    CAS  Google Scholar 

  105. S. Ryu, J.H. Noh, N.J. Jeon, Y.C. Kim, W.S. Yang, J. Seo, S.I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7(8), 2614–2618 (2014)

    CAS  Google Scholar 

  106. R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, M.A. Green, Methylammonium lead bromide perovskite-based solar cells by vapor-assisted deposition. J. Phys. Chem. C 119(7), 3545–3549 (2015)

    CAS  Google Scholar 

  107. C.G. Wu, C.H. Chiang, S.H. Chang, A perovskite cell with a record-high-Voc of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer. Nanoscale 8(7), 4077–4085 (2016)

    CAS  Google Scholar 

  108. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    CAS  Google Scholar 

  109. M. Faghihnasiri, M. Izadifard, M.E. Ghazi, DFT study of mechanical properties and stability of cubic methylammonium lead halide perovskites (CH3NH3PbX3, X = I, Br, Cl). J. Phys. Chem. C 121(48), 27059–27070 (2017)

    CAS  Google Scholar 

  110. E. Mosconi, P. Umari, F. De Angelis, Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. Phys. Chem. Chem. Phys. 18(39), 27158–27164 (2016)

    CAS  Google Scholar 

  111. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, A. Latini, On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016)

    CAS  Google Scholar 

  112. M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6(1), 1–6 (2015)

    Google Scholar 

  113. E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4(6), 897–902 (2013)

    CAS  Google Scholar 

  114. J.H. Heo, D.H. Song, S.H. Im, Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26(48), 8179–8183 (2014)

    CAS  Google Scholar 

  115. S.T. Williams, F. Zuo, C.C. Chueh, C.Y. Liao, P.-W. Liang, A.K.Y. Jen, Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8(10), 10640–10654 (2014)

    CAS  Google Scholar 

  116. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The role of chlorine in the formation process of “CH3NH3PbI3-xClx” perovskite. Adv. Funct. Mater. 24(45), 7102–7108 (2014)

    CAS  Google Scholar 

  117. Q. Chen, H. Zhou, Y. Fang, A.Z. Stieg, T.B. Song, H.H. Wang, X. Xu, Y. Liu, S. Lu, J. You, The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015)

    CAS  Google Scholar 

  118. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    CAS  Google Scholar 

  119. C. Cao, C. Zhang, J. Yang, J. Sun, S. Pang, H. Wu, R. Wu, Y. Gao, C. Liu, Iodine and chlorine element evolution in CH3NH3PbI3–xClx thin films for highly efficient planar heterojunction perovskite solar cells. Chem. Mater. 28(8), 2742–2749 (2016)

    CAS  Google Scholar 

  120. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, MAPbI3-xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25(22), 4613–4618 (2013)

    CAS  Google Scholar 

  121. Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12(10), 2646–2662 (2010)

    CAS  Google Scholar 

  122. M. Zhang, M. Lyu, H. Yu, J.H. Yun, Q. Wang, L. Wang, Stable and low-cost mesoscopic CH3NH3PbI2Br perovskite solar cells by using a thin poly (3-hexylthiophene) layer as a hole transporter. Chem. Eur. J. 21(1), 434–439 (2015)

    CAS  Google Scholar 

  123. B. Suarez, V. Gonzalez-Pedro, T.S. Ripolles, R.S. Sanchez, L. Otero, I. Mora-Sero, Recombination study of combined halides (Cl, Br, I) perovskite solar cells. J. Phys. Chem. Lett. 5(10), 1628–1635 (2014)

    CAS  Google Scholar 

  124. W. Zhu, C. Bao, F. Li, T. Yu, H. Gao, Y. Yi, J. Yang, G. Fu, X. Zhou, Z. Zou, A halide exchange engineering for CH3NH3PbI3 − xBrx perovskite solar cells with high performance and stability. Nano Energy 19, 17–26 (2016)

    CAS  Google Scholar 

  125. S. Aharon, B.E. Cohen, L. Etgar, Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J. Phys. Chem. C 118(30), 17160–17165 (2014)

    CAS  Google Scholar 

  126. E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, D. Cahen, Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5(3), 429–433 (2014)

    CAS  Google Scholar 

  127. Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, S. Kirmayer, Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136(38), 13249–13256 (2014)

    CAS  Google Scholar 

  128. B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27(43), 6806–6813 (2015)

    CAS  Google Scholar 

  129. E.T. McClure, M.R. Ball, W. Windl, P.M. Woodward, Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chem. Mater. 28(5), 1348–1354 (2016)

    CAS  Google Scholar 

  130. B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater. 27(16), 5622–5632 (2015)

    CAS  Google Scholar 

  131. D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg. Chem. 55(3), 1044–1052 (2016)

    CAS  Google Scholar 

  132. Y. Zheng, R. Su, Z. Xu, D. Luo, H. Dong, B. Jiao, Z. Wu, Q. Gong, R. Zhu, Perovskite solar cell towards lower toxicity: a theoretical study of physical lead reduction strategy. Sci. Bull. 64(17), 1255–1261 (2019)

    CAS  Google Scholar 

  133. A. Abate, Perovskite solar cells go lead free. Joule 1(4), 659–664 (2017)

    CAS  Google Scholar 

  134. R.L. Hoye, R.E. Brandt, A. Osherov, V. Stevanović, S.D. Stranks, M.W. Wilson, H. Kim, A.J. Akey, J.D. Perkins, R.C. Kurchin, Methylammonium bismuth iodide as a lead-free, stable hybrid organic–inorganic solar absorber. Chem. Eur. J. 22(8), 2605–2610 (2016)

    CAS  Google Scholar 

  135. M. Lyu, J.H. Yun, M. Cai, Y. Jiao, P.V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, Organic–inorganic bismuth (III)-based material: a lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Res. 9(3), 692–702 (2016)

    CAS  Google Scholar 

  136. K. Eckhardt, V. Bon, J. Getzschmann, J. Grothe, F.M. Wisser, S. Kaskel, Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic–inorganic material as a potential absorber for photovoltaics. Chem. Commun. 52(14), 3058–3060 (2016)

    CAS  Google Scholar 

  137. Z. Yang, A. Surrente, K. Galkowski, N. Bruyant, D.K. Maude, A.A. Haghighirad, H.J. Snaith, P. Plochocka, R.J. Nicholas, Unraveling the exciton binding energy and the dielectric constant in single-crystal methylammonium lead triiodide perovskite. J. Phys. Chem. Lett. 8(8), 1851–1855 (2017)

    CAS  Google Scholar 

  138. B. Hwang, J.-S. Lee, Lead-free, air-stable hybrid organic–inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. Nanoscale 10(18), 8578–8584 (2018)

    CAS  Google Scholar 

  139. J.C. Dahl, W.T. Osowiecki, Y. Cai, J.K. Swabeck, Y. Bekenstein, M. Asta, E.M. Chan, A.P. Alivisatos, Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals. Chem. Mater. 31(9), 3134–3143 (2019)

    CAS  Google Scholar 

  140. P.K. Kung, M.H. Li, P.Y. Lin, J.Y. Jhang, M. Pantaler, D.C. Lupascu, G. Grancini, P. Chen, Lead-free double perovskites for perovskite solar cells. Sol. RRL 4(2), 1900306 (2020)

  141. G. Volonakis, M.R. Filip, A.A. Haghighirad, N. Sakai, B. Wenger, H.J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7(7), 1254–1259 (2016)

    CAS  Google Scholar 

  142. P. Huang, S. Kazim, M. Wang, S. Ahmad, Toward phase stability: Dion–Jacobson layered perovskite for solar cells. ACS Energy Lett. 4(12), 2960–2974 (2019)

    CAS  Google Scholar 

  143. S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu, X. Wang, X. Wang, X. Guo, C. Li, Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule 3(3), 794–806 (2019)

    CAS  Google Scholar 

  144. F.C. Hanusch, E. Wiesenmayer, E. Mankel, A. Binek, P. Angloher, C. Fraunhofer, N. Giesbrecht, J.M. Feckl, W. Jaegermann, D. Johrendt, Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J. Phys. Chem. Lett. 5(16), 2791–2795 (2014)

    CAS  Google Scholar 

  145. Y. Zhou, M. Yang, S. Pang, K. Zhu, N.P. Padture, Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement. J. Am. Chem. Soc. 138(17), 5535–5538 (2016)

    CAS  Google Scholar 

  146. M.R. Leyden, M.V. Lee, S.R. Raga, Y. Qi, Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3(31), 16097–16103 (2015)

    CAS  Google Scholar 

  147. S. Wozny, M. Yang, A.M. Nardes, C.C. Mercado, S. Ferrere, M.O. Reese, W. Zhou, K. Zhu, Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chem. Mater. 27(13), 4814–4820 (2015)

    CAS  Google Scholar 

  148. S. Lv, S. Pang, Y. Zhou, N.P. Padture, H. Hu, L. Wang, X. Zhou, H. Zhu, L. Zhang, C. Huang, One-step, solution-processed formamidinium lead trihalide (FAPbI(3− x)Clx) for mesoscopic perovskite–polymer solar cells. Phys. Chem. Chem. Phys. 16(36), 19206–19211 (2014)

    CAS  Google Scholar 

  149. T.S. Ripolles, K. Nishinaka, Y. Ogomi, Y. Miyata, S. Hayase, Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium. Sol. Energy Mater. Sol. Cells 144, 532–536 (2016)

    CAS  Google Scholar 

  150. Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry, K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016)

    Google Scholar 

  151. T. Luo, Y. Zhang, Z. Xu, T. Niu, J. Wen, J. Lu, S. Jin, S. Liu, K. Zhao, Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%. Adv. Mater. 31(44), 1903848 (2019)

    CAS  Google Scholar 

  152. R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao, W.L. Tan, X. Jiao, H. Chen, L. Zhang, Q. Chen, Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30(51), 1804771 (2018)

    Google Scholar 

  153. J. Shi, Y. Gao, X. Gao, Y. Zhang, J. Zhang, X. Jing, M. Shao, Fluorinated low-dimensional Ruddlesden–Popper perovskite solar cells with over 17% power conversion efficiency and improved stability. Adv. Mater. 31(37), 1901673 (2019)

    Google Scholar 

  154. H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie, T. Zhou, X. Wan, X. Zhang, Y. Liu, Y. Chen, Two-dimensional Ruddlesden–Popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 140(37), 11639–11646 (2018)

    CAS  Google Scholar 

  155. H. Wang, C.C. Chan, M. Chu, J. Xie, S. Zhao, X. Guo, Q. Miao, K.S. Wong, K. Yan, J. Xu, Interlayer cross-linked 2D perovskite solar cell with uniform phase distribution and increased exciton coupling. Sol. RRL 4(4), 1900578 (2020)

  156. J. Zhou, Z. Ye, J. Hou, J. Wu, Y.Z. Zheng, X. Tao, Efficient ambient-air-stable HTM-free carbon-based perovskite solar cells with hybrid 2D–3D lead halide photoabsorbers. J. Mater. Chem. A 6(45), 22626–22635 (2018)

    CAS  Google Scholar 

  157. X. Zhang, G. Wu, W. Fu, M. Qin, W. Yang, J. Yan, Z. Zhang, X. Lu, H. Chen, Orientation regulation of phenylethylammonium cation based 2D perovskite solar cell with efficiency higher than 11%. Adv. Energy Mater. 8(14), 1702498 (2018)

    Google Scholar 

  158. Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su, K. Zheng, T. Pullerits, Z. Liang, Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7(18), 1700162 (2017)

    Google Scholar 

  159. P. Cheng, Z. Xu, J. Li, Y. Liu, Y. Fan, L. Yu, D.-M. Smilgies, C. MÜller, K. Zhao, S.F. Liu, Highly efficient Ruddlesden–Popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Lett. 3(8), 1975–1982 (2018)

    CAS  Google Scholar 

  160. K. Yao, X. Wang, Y.X. Xu, F. Li, L. Zhou, Multilayered perovskite materials based on polymeric-ammonium cations for stable large-area solar cell. Chem. Mater. 28(9), 3131–3138 (2016)

    CAS  Google Scholar 

  161. W. Fu, H. Liu, X. Shi, L. Zuo, X. Li, A.K.Y. Jen, Tailoring the functionality of organic spacer cations for efficient and stable quasi-2D perovskite solar cells. Adv. Funct. Mater. 29(25), 1900221 (2019)

    Google Scholar 

  162. J. Rodríguez-Romero, B.C. Hames, P. Galar, A. Fakharuddin, I. Suarez, L. Schmidt-Mende, J.P. Martínez-Pastor, A. Douhal, I. Mora-Seró, E.M. Barea, Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Phys. Chem. Chem. Phys. 20(48), 30189–30199 (2018)

    Google Scholar 

  163. C.M.M. Soe, C.C. Stoumpos, M. Kepenekian, B. Traoré, H. Tsai, W. Nie, B. Wang, C. Katan, R. Seshadri, A.D. Mohite, New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n + 1: structure, properties, and photovoltaic performance. J. Am. Chem. Soc. 139(45), 16297–16309 (2017)

    CAS  Google Scholar 

  164. M. Safdari, P.H. Svensson, M.T. Hoang, I. Oh, L. Kloo, J.M. Gardner, Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells. J. Mater. Chem. A 4(40), 15638–15646 (2016)

    CAS  Google Scholar 

  165. K. Wang, L. Zheng, T. Zhu, L. Liu, M.L. Becker, X. Gong, High performance perovskites solar cells by hybrid perovskites co-crystallized with poly (ethylene oxide). Nano Energy 67, 104229 (2020)

    CAS  Google Scholar 

  166. L. Zheng, K. Wang, T. Zhu, Y. Yang, R. Chen, K. Gu, C. Liu, X. Gong, High-performance perovskite solar cells by one-step self-assembled perovskite-polymer thin films. ACS Appl. Energy Mater. 3(6), 5902–5912 (2020)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Science Foundation (ECCS/EPMD1903303) and Air Force Office of Scientific Research (through the Organic Materials Chemistry Program, Grant Number: FA9550-15-1-0292, Program Manager, Dr. Kenneth Caster) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Yao, X., Wu, H. et al. The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. emergent mater. 3, 727–750 (2020). https://doi.org/10.1007/s42247-020-00128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00128-8

Navigation