Skip to main content
Log in

Carbonaceous nanomaterials for phototherapy: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

A Correction to this article was published on 09 September 2020

This article has been updated

Abstract

Nowadays, cancer can be described as a common disease of our society. According to the World Health Organization, 8.2 million people in the world (approximately 0.11% of worldwide population) die each year from cancer. A major challenge for cancer therapy remains in developing cancer treatments with less toxicity. Conducted worldwide, over a period of 25 years, the outcomes of preclinical and clinical studies established phototherapy (PT) as a useful treatment for some cancer types. Photodynamic therapy (PDT) and photothermal therapy (PTT) are two critical PT treatments in order to damage tumor cells. PDT utilizes a combination of drugs, photosensitive molecules also known as photosensitizers (PSs), and visible light of an appropriate wavelength in order to activate drugs. PTT employs agents to generate heat from illumination. Most clinically confirmed PSs target superficial lesions because of their limited effects on cancerous tissues, and consequently, this approach causes non-effective therapy to deep-seated cancerous tissues. Combination of PDT and PTT with carbonaceous nanomaterials (CNs) offers additional active complementary and supplementary roles for deep tumors in cancer therapy. The effective delivery of therapeutic molecules into the cancer cell, containing surfaces, optimum sizes, and shapes of the CNs that are able to be enhanced with homing ligands and utilizable interactions. CNs have significant potential for biomedical applications, due to their unique well-designed size, composition, biocompatibility, and functionalities. CNs including graphene, graphene oxide (GO), carbon nanotubes (CNTs), and fullerenes (C60) can act as efficient PS carriers for cancer treatment. Each material has advantages and disadvantages such as degradability, solubility, and drug loading capacity for cancer therapy. This review discusses the theranostic applications of CNs. Benefiting from other researches, CNs will be categorized with regard to their application and effectiveness in PT. The chemical modification of the mentioned substances before their biomedical applications will be briefly discussed. The advantages and limitations of these nanomaterials (NMs) provide a new perspective on improving cancer therapy using these CNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 09 September 2020

    The publication of this article unfortunately contained a mistake.

References

  1. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology (2007)

  2. J. Li, K. Pu, Development of organic semiconducting materials for deep-tissue optical imaging, phototherapy and photoactivation. Chemical Society Reviews (2019)

  3. P.W. Chang, M.W. Kuzniewicz, C.E. McCulloch, T.B. Newman, A clinical prediction rule for rebound hyperbilirubinemia following inpatient phototherapy. Pediatrics (2017)

  4. J. Li, J. Rao, K. Pu, Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials (2018)

  5. Josefsen, L.B., and Boyle, R.W. (2012) Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics

  6. X. Li, J.F. Lovell, J. Yoon, X. Chen, Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews. Clinical Oncology (2020)

  7. W. Sheng, S. He, W.J. Seare, A. Almutairi, Review of the progress toward achieving heat confinement—the holy grail of photothermal therapy. Journal of Biomedical Optics (2017)

  8. J.R. Lepock, Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. International Journal of Hyperthermia (2003)

  9. P. Agostinis, K. Berg, K.A. Cengel, T.H. Foster, A.W. Girotti, S.O. Gollnick, S.M. Hahn, M.R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B.C. Wilson, J. Golab, Photodynamic therapy of cancer: an update. CA: a Cancer Journal for Clinicians (2011)

  10. S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.i. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, T. Joh, Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C Photochemistry Reviews (2011)

  11. M. Kim, H.Y. Jung, H.J. Park, Topical PDT in the treatment of benign skin diseases: principles and new applications. International Journal of Molecular Sciences (2015)

  12. R.C. Guedes, L.A. Eriksson, Theoretical study of hypericin. Journal of Photochemistry and Photobiology A: Chemistry (2005)

  13. B. Krammer, T. Verwanger, Molecular response to hypericin-induced photodamage. Current Medicinal Chemistry (2012)

  14. Q. Liu, F. Wackenhut, O. Hauler, M. Scholz, S. zur Oven-Krockhaus, R. Ritz, P.-M. Adam, M. Brecht, A.J. Meixner, Hypericin: single molecule spectroscopy of an active natural drug. The Journal of Physical Chemistry. A 124(12), 2497–2504 (2020)

    Article  CAS  Google Scholar 

  15. Iyer, R., Wolf, J., Zhukova, D., Padanilam, D., and Nguyen, K.T. (2018) Chapter 12 - nanomaterial based photo-triggered drug delivery strategies for cancer theranostics (eds. Conde, J.B.T.-H. of N. for C.T.), Elsevier, pp. 351–391

  16. J. Hu, Y. Tang, A.H. Elmenoufy, H. Xu, Z. Cheng, X. Yang, Nanocomposite-based photodynamic therapy strategies for deep tumor treatment. Small (2015)

  17. W.M. Sharman, C.M. Allen, J.E. Van Lier, Photodynamic therapeutics: basic principles and clinical applications. Drug Discovery Today (1999)

  18. Y.N. Konan, R. Gurny, E. Allémann, State of the art in the delivery of photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology (2002)

  19. S.M. Janib, A.S. Moses, J.A. MacKay, Imaging and drug delivery using theranostic nanoparticles. Advanced Drug Delivery Reviews (2010)

  20. Q. Jia, J. Ge, W. Liu, S. Liu, G. Niu, L. Guo, H. Zhang, P. Wang, Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 8(26), 13067–13077 (2016)

    Article  CAS  Google Scholar 

  21. Pradeepa, S.M., Bhojya Naik, H.S., Vinay Kumar, B., Indira Priyadarsini, K., Barik, A., and Ravikumar Naik, T.R. (2013) Cobalt (II), Nickel (II) and Copper (II) complexes of a tetradentate Schiff base as photosensitizers: quantum yield of 1O2 generation and its promising role in anti-tumor activity. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc

  22. R.M. Dalrymple, A.K. Carfagno, C.M. Sharpless, Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environmental Science & Technology (2010)

  23. J. Zou, Z. Yin, P. Wang, D. Chen, J. Shao, Q. Zhang, L. Sun, W. Huang, X. Dong, Photosensitizer synergistic effects: D-A-D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. Chemical Science (2018)

  24. P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta (2016)

  25. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews (2015)

  26. L. Feng, Z. Liu, Graphene in biomedicine: opportunities and challenges. Nanomedicine (2011)

  27. D. Chen, C.A. Dougherty, K. Zhu, H. Hong, Theranostic applications of carbon nanomaterials in cancer: focus on imaging and cargo delivery. Journal of Controlled Release (2015)

  28. Liu, Z., and Liang, X.J. (2012) Nano-carbons as theranostics. Theranostics

  29. R. Kalyn, Overview of targeted therapies in oncology. Journal of Oncology Pharmacy Practice (2007)

  30. Dougherty, T.J., Grindey, G.B., Fiel, R., Weishaupt, K.R., and Boyle, D.G. (1975) Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Cancer Inst

  31. C. Abels, Targeting of the vascular system of solid tumours by photodynamic therapy (PDT). Photochemical & Photobiological Sciences (2004)

  32. A.G. Arguinzoniz, E. Ruggiero, A. Habtemariam, J. Hernández-Gil, L. Salassa, J.C. Mareque-Rivas, Light harvesting and photoemission by nanoparticles for photodynamic therapy. Particle and Particle Systems Characterization (2014)

  33. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9, 1050–1074 (2018)

    Article  CAS  Google Scholar 

  34. Vines, J.B., Yoon, J.H., Ryu, N.E., Lim, D.J., and Park, H. (2019) Gold nanoparticles for photothermal cancer therapy. Front. Chem

  35. Yu, H.S., Park, H., Tran, T.H., Hwang, S.Y., Na, K., Lee, E.S., Oh, K.T., Oh, D.X., and Park, J. (2019) Poisonous caterpillar-inspired chitosan nanofiber enabling dual photothermal and photodynamic tumor ablation. Pharmaceutics

  36. B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs. Advanced Drug Delivery Reviews (2013)

  37. J.R. Giudicessi, B.A. Michael, J. Ackerman, (2008) 基因的改变NIH public access. Bone 23(1), 1–7 (2013)

    Google Scholar 

  38. K.P. Loh, D. Ho, G.N.C. Chiu, D.T. Leong, G. Pastorin, E.K.H. Chow, Clinical applications of carbon nanomaterials in diagnostics and therapy. Advanced Materials (2018)

  39. Shao, W. (2013) Carbon nanotubes for use in medicine: potentials and limitations (eds. Arghya, P.), IntechOpen, Rijeka, pp. Ch. 13

  40. R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, U.G. Sauer, Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping. Journal of Nanoparticle Research 19(5), 171 (2017)

    Article  Google Scholar 

  41. H. Haniu, Y. Matsuda, Y. Usui, K. Aoki, M. Shimizu, N. Ogihara, K. Hara, M. Okamoto, S. Takanashi, N. Ishigaki, K. Nakamura, H. Kato, N. Saito, Toxicoproteomic evaluation of carbon nanomaterials in vitro. Journal of Proteomics 74(12), 2703–2712 (2011)

    Article  CAS  Google Scholar 

  42. Salama, A., Shukry, N., and Guarino, V. (2020) Polysaccharide-based hybrid materials for molecular release applications, in Nanostructured Biomaterials for Regenerative Medicine

  43. E. Wang, in Simpler van der Waals heterostructure-twisted bilayer graphene BT - angle-resolved photoemission spectroscopy studies of 2D material heterostructures, ed. by E. Wang. (Springer Singapore, Singapore, 2020), pp. 53–62

    Chapter  Google Scholar 

  44. Naldini, L., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science (80-. )., 272 (5259), 263 LP – 267

  45. G. Tyagi, M., A.P. Albert, V. Tyagi, R. Hema, Graphene nanomaterials and applications in bio-medical sciences. World Journal of Pharmaceutical Sciences 3, 339–345 (2013)

  46. H. Zhu, N. Ni, S. Govindarajan, X. Ding, D.T. Leong, Phototherapy with layered materials derived quantum dots. Nanoscale 12(1), 43–57 (2020)

    Article  CAS  Google Scholar 

  47. M. Xu, G. Yang, H. Bi, J. Xu, L. Feng, D. Yang, Q. Sun, S. Gai, F. He, Y. Dai, C. Zhong, P. Yang, Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. Chemical Engineering Journal (2019)

  48. C. Martín, A. Ruiz, S. Keshavan, G. Reina, D. Murera, Y. Nishina, B. Fadeel, A. Bianco, A biodegradable multifunctional graphene oxide platform for targeted cancer therapy. Advanced Functional Materials 29(39), 1901761 (2019)

    Article  Google Scholar 

  49. M. Pirsaheb, S. Mohammadi, A. Salimi, M. Payandeh, Functionalized fluorescent carbon nanostructures for targeted imaging of cancer cells: a review. Microchimica Acta (2019)

  50. M. Bozlar, F. Miomandre, J. Bai, Electrochemical synthesis and characterization of carbon nanotube/modified polypyrrole hybrids using a cavity microelectrode. Carbon N. Y. 47(1), 80–84 (2009)

    Article  CAS  Google Scholar 

  51. A.R. Harutyunyan, B.K. Pradhan, G.U. Sumanasekera, E.Y. Korobko, A.A. Kuznetsov, Carbon nanotubes for medical applications. European Cells & Materials 3(SUPPL. 2), 84–87 (2002)

    Google Scholar 

  52. H.A.F.M. Hassan, S.S. Diebold, L.A. Smyth, A.A. Walters, G. Lombardi, K.T. Al-Jamal, Application of carbon nanotubes in cancer vaccines: achievements, challenges and chances. Journal of Controlled Release (2019)

  53. Yang, S.T., Luo, J., Zhou, Q., and Wang, H. (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for bio-medical purposes. Theranostics

  54. K. Kostarelos, The long and short of carbon nanotube toxicity. Nature Biotechnology (2008)

  55. D.W. Porter, A.F. Hubbs, R.R. Mercer, N. Wu, M.G. Wolfarth, K. Sriram, S. Leonard, L. Battelli, D. Schwegler-Berry, S. Friend, M. Andrew, B.T. Chen, S. Tsuruoka, M. Endo, V. Castranova, Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology (2010)

  56. P. Anilkumar, F. Lu, L. Cao, G. Luo, P. Liu, J.-H. Sahu, S.N. Tackett II, K. Wang. Y., Y.-P. Sun, Fullerenes for applications in biology and medicine. Current Medicinal Chemistry (2012)

  57. R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Medicinal applications of fullerenes. International Journal of Nanomedicine (2007)

  58. F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchimica Acta 184(7), 1899–1914 (2017)

    Article  CAS  Google Scholar 

  59. J. Wang, J. Qiu, A review of carbon dots in biological applications. Journal of Materials Science (2016)

  60. M. Tuerhong, Y. XU, X.-B. YIN, Review on carbon dots and their applications. Chinese Journal of Analytical Chemistry 45(1), 139–150 (2017)

    Article  Google Scholar 

  61. Q. Jia, X. Zheng, J. Ge, W. Liu, H. Ren, S. Chen, Y. Wen, H. Zhang, J. Wu, P. Wang, Synthesis of carbon dots from Hypocrella bambusae for bimodel fluorescence/photoacoustic imaging-guided synergistic photodynamic/photothermal therapy of cancer. Journal of Colloid and Interface Science 526, 302–311 (2018)

    Article  CAS  Google Scholar 

  62. I. Srivastava, D. Sar, P. Mukherjee, A.S. Schwartz-Duval, Z. Huang, C. Jaramillo, A. Civantos, I. Tripathi, J.P. Allain, R. Bhargava, D. Pan, Enzyme-catalysed biodegradation of carbon dots follows sequential oxidation in a time dependent manner. Nanoscale (2019)

  63. F. Yan, Y. Jiang, X. Sun, Z. Bai, Y. Zhang, X. Zhou, Surface modification and chemical functionalization of carbon dots: a review. Microchimica Acta (2018)

  64. K. Wang, Z. Gao, G. Gao, Y. Wo, Y. Wang, G. Shen, D. Cui, Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Research Letters (2013)

  65. A.K. Geim, K.S. Novoselov, The rise of graphene. Nature Materials (2007)

  66. Z. Liu, J.T. Robinson, X. Sun, H. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society (2008)

  67. W. Wei, X. Qu, Extraordinary physical properties of functionalized graphene. Small (2012)

  68. A. Sanginario, B. Miccoli, D. Demarchi, Carbon nanotubes as an effective opportunity for cancer diagnosis and treatment. Biosensors (2017)

  69. Z.M. Markovic, B.Z. Ristic, K.M. Arsikin, D.G. Klisic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepic, T.K. Kravic-Stevovic, S.P. Jovanovic, M.M. Milenkovic, D.D. Milivojevic, V.Z. Bumbasirevic, M.D. Dramicanin, V.S. Trajkovic, Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials (2012)

  70. Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H., Meng, X., Wang, P., Lee, C.S., Zhang, W., and Han, X. (2014) A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun

  71. S.P. Jovanović, Z. Syrgiannis, Z.M. Marković, A. Bonasera, D.P. Kepić, M.D. Budimir, D.D. Milivojević, V.D. Spasojević, M.D. Dramićanin, V.B. Pavlović, B.M. Todorović Marković, Modification of structural and luminescence properties of graphene quantum dots by gamma irradiation and their application in a photodynamic therapy. ACS Applied Materials & Interfaces (2015)

  72. Z.G. Wang, R. Zhou, D. Jiang, J.E. Song, Q. Xu, J. Si, Y.P. Chen, X. Zhou, L. Gan, J.Z. Li, H. Zhang, B. Liu, Toxicity of graphene quantum dots in zebrafish embryo. Biomedical and Environmental Sciences (2015)

  73. X. Ma, H. Tao, K. Yang, L. Feng, L. Cheng, X. Shi, Y. Li, L. Guo, Z. Liu, A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research 5(3), 199–212 (2012)

    Article  CAS  Google Scholar 

  74. B.-P. Jiang, L.-F. Hu, D.-J. Wang, S. Ji, X.-C. Shen, H. Liang, Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method. Journal of Materials Chemistry B 2 (2014)

  75. G. Gollavelli, Y.C. Ling, Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials (2014)

  76. L. Lai, A.S. Barnard, Functionalized nanodiamonds for biological and medical applications. Journal of Nanoscience and Nanotechnology (2015)

  77. K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters (2010)

  78. M. Wojtoniszak, D. Rogińska, B. Machaliński, M. Drozdzik, E. Mijowska, Graphene oxide functionalized with methylene blue and its performance in singlet oxygen generation. Materials Research Bulletin (2013)

  79. Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepić, K.M. Arsikin, S.P. Jovanović, A.C. Pantovic, M.D. Dramićanin, V.S. Trajkovic, In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials (2011)

  80. Dong, H., Zhao, Z., Wen, H., Li, Y., Guo, F., Shen, A., Pilger, F., Lin, C., and Shi, D. (2010) Poly (ethylene glycol) conjugated nano-graphene oxide for photodynamic therapy. Sci. China Chem

  81. K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, Z. Liu, The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials (2012)

  82. X. Shi, H. Gong, Y. Li, C. Wang, L. Cheng, Z. Liu, Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials (2013)

  83. A. Sahu, W.I. Choi, J.H. Lee, G. Tae, Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials (2013)

  84. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials (2011)

  85. J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, H. Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. Journal of the American Chemical Society (2011)

  86. K. Yang, L. Hu, X. Ma, S. Ye, L. Cheng, X. Shi, C. Li, Y. Li, Z. Liu, Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced Materials (2012)

  87. H. Kim, D. Lee, J. Kim, T.I. Kim, W.J. Kim, Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano (2013)

  88. O. Akhavan, E. Ghaderi, Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small (2013)

  89. S.H. Kim, J.E. Lee, S.M. Sharker, J.H. Jeong, I. In, S.Y. Park, In vitro and in vivo tumor targeted photothermal cancer therapy using functionalized graphene nanoparticles. Biomacromolecules (2015)

  90. S.M. Sharker, J.E. Lee, S.H. Kim, J.H. Jeong, I. In, H. Lee, S.Y. Park, pH triggered in vivo photothermal therapy and fluorescence nanoplatform of cancer based on responsive polymer-indocyanine green integrated reduced graphene oxide. Biomaterials (2015)

  91. L. Chen, X. Zhong, X. Yia, M. Huang, P. Ning, T. Liu, C. Ge, Z. Chai, Z. Liu, K. Yang, Radionuclide 131I labeled reduced graphene oxide for nuclear imaging guided combined radio- and photothermal therapy of cancer. Biomaterials (2015)

  92. Z. Sheng, L. Song, J. Zheng, D. Hu, M. He, M. Zheng, G. Gao, P. Gong, P. Zhang, Y. Ma, L. Cai, Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials (2013)

  93. S. Gao, L. Zhang, G. Wang, K. Yang, M. Chen, R. Tian, Q. Ma, L. Zhu, Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy. Biomaterials 79, 36–45 (2016)

    Article  CAS  Google Scholar 

  94. Y. Wang, K. Wang, J. Zhao, X. Liu, J. Bu, X. Yan, R. Huang, Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. Journal of the American Chemical Society (2013)

  95. Liu, Z., Tabakman, S., Welsher, K., and Dai, H. (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res

  96. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical Reviews (2012)

  97. Sun, X., Liu, Z., Welsher, K., Robinson, J.T., Goodwin, A., Zaric, S., and Dai, H. (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res

  98. Z. Bao, X. Liu, Y. Liu, H. Liu, K. Zhao, Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian Journal of Pharmaceutical Sciences 11(3), 349–364 (2016)

    Article  Google Scholar 

  99. Z. Peng, X. Liu, W. Zhang, Z. Zeng, Z. Liu, C. Zhang, Y. Liu, B. Shao, Q. Liang, W. Tang, X. Yuan, Advances in the application, toxicity and degradation of carbon nanomaterials in environment: a review. Environment International 134(August 2019), 105298 (2020)

    Article  CAS  Google Scholar 

  100. N.F. Rosli, M. Fojtů, A.C. Fisher, M. Pumera, Graphene oxide nanoplatelets potentiate anticancer effect of cisplatin in human lung cancer cells. Langmuir (2019)

  101. J. Zhang, L. Chen, B. Shen, L. Chen, J. Mo, J. Feng, Dual-sensitive graphene oxide loaded with proapoptotic peptides and anticancer drugs for cancer synergetic therapy. Langmuir (2019)

  102. Li, Y., Dong, H., Li, Y., and Shi, D. (2015) Graphene-based nanovehicles for photodynamic medical therapy. Int. J. Nanomedicine

  103. Zhou, L., Wang, W., Tang, J., Zhou, J.H., Jiang, H.J., and Shen, J. (2011) Graphene oxide noncovalent photosensitizer and its anticancer activity in vitro. Chem. - A Eur. J

  104. Zhou, L., Jiang, H., Wei, S., Ge, X., Zhou, J., and Shen, J. (2012) High-efficiency loading of hypocrellin b on graphene oxide for photodynamic therapy. Carbon N. Y

  105. B. Tian, C. Wang, S. Zhang, L. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano (2011)

  106. Huang, P., Xu, C., Lin, J., Wang, C., Wang, X., Zhang, C., Zhou, X., Guo, S., and Cui, D. (2012) Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics

  107. L. Zhou, L. Zhou, S. Wei, X. Ge, J. Zhou, H. Jiang, F. Li, J. Shen, Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Journal of Photochemistry and Photobiology B: Biology (2014)

  108. Li, F., Park, S.J., Ling, D., Park, W., Han, J.Y., Na, K., and Char, K. (2013) Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy. J. Mater. Chem. B

  109. G. Liu, H. Qin, T. Amano, T. Murakami, N. Komatsu, Direct fabrication of the graphene-based composite for cancer phototherapy through graphite exfoliation with a photosensitizer. ACS Applied Materials & Interfaces (2015)

  110. U. Dembereldorj, S.Y. Choi, E.O. Ganbold, N.W. Song, D. Kim, J. Choo, S.Y. Lee, S. Kim, S.W. Joo, Gold nanorod-assembled pegylated graphene-oxide nanocomposites for photothermal cancer therapy. Photochemistry and Photobiology (2014)

  111. S. Su, J. Wang, J. Wei, R. Martínez-Zaguilán, J. Qiu, S. Wang, Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New Journal of Chemistry (2015)

  112. S.H. Hu, Y.W. Chen, W.T. Hung, I.W. Chen, S.Y. Chen, Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ. Advanced Materials (2012)

  113. Y. Wang, H. Wang, D. Liu, S. Song, X. Wang, H. Zhang, Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 34(31), 7715–7724 (2013)

    Article  CAS  Google Scholar 

  114. Li, X. Da, Liang, X.L., Yue, X.L., Wang, J.R., Li, C.H., Deng, Z.J., Jing, L.J., Lin, L., Qu, E.Z., Wang, S.M., Wu, C.L., Wu, H.X., and Dai, Z.F. (2014) Imaging guided photothermal therapy using iron oxide loaded poly (lactic acid) microcapsules coated with graphene oxide. J. Mater. Chem. B

  115. H. Zhang, H. Wu, J. Wang, Y. Yang, D. Wu, Y. Zhang, Y. Zhang, Z. Zhou, S. Yang, Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy. Biomaterials (2015)

  116. S. Gurunathan, M. Jeyaraj, M.H. Kang, J.H. Kim, Graphene oxide-platinum nanoparticle nanocomposites: a suitable biocompatible therapeutic agent for prostate cancer. Polymers (Basel) (2019)

  117. A. Bonanni, C.K. Chua, G. Zhao, Z. Sofer, M. Pumera, Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano (2012)

  118. S. Iijima, Helical microtubules of graphitic carbon. Nature (1991)

  119. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature (1993)

  120. E.D. Meliţă, G. Purcel, A.M. Grumezescu, Carbon nanotubes for cancer therapy and neurodegenerative diseases. Romanian Journal of Morphology and Embryology (2015)

  121. B. Pineda, N. Hernandez-Pedro, R. Maldonado, V. Perez-De la Cruz, J. Sotelo, Carbon nanotubes: a new biotechnological tool on the diagnosis and treatment of cancer. Nanobiotechnology, 113–131

  122. K. Varshney, Carbon nanotube: a review on synthesis, properties and applications. International Journal of Engine Research 2 (2014)

  123. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’Homme, L.C. Brinson, Functionalized graphene sheets for polymer nanocomposites. Nature Nanotechnology 3(6), 327–331 (2008)

    Article  CAS  Google Scholar 

  124. S. Erbas, A. Gorgulu, M. Kocakusakogullari, E.U. Akkaya, Non-covalent functionalized SWNTs as delivery agents for novel Bodipy-based potential PDT sensitizers. Chemical Communications (2009)

  125. Shiraki, T., Dawn, A., Lien, L., Tsuchiya, Y., Tamaru, S., and Shinkai, S. (2011) Heat and light dual switching of a single-walled carbon nanotube/thermo-responsive helical polysaccharide complex: a new responsive system applicable to photodynamic therapy (vol 47, pg 7065, 2011). Chem. Commun. (Camb)., 47, 7065–7067

  126. X. Wang, C. Wang, L. Cheng, S.T. Lee, Z. Liu, Noble metal coated single-walled carbon nanotubes for applications in surface enhanced raman scattering imaging and photothermal therapy. Journal of the American Chemical Society (2012)

  127. S.Y. Kim, J.Y. Hwang, J.W. Seo, U.S. Shin, Production of CNT-taxol-embedded PCL microspheres using an ammonium-based room temperature ionic liquid: as a sustained drug delivery system. Journal of Colloid and Interface Science (2015)

  128. S. Prakash, M. Malhotra, W. Shao, C. Tomaro-Duchesneau, S. Abbasi, Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Advanced Drug Delivery Reviews (2011)

  129. Y. Zhang, Y. Bai, B. Yan, Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Today (2010)

  130. H.K. Moon, S.H. Lee, H.C. Choi, In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano (2009)

  131. X. Liu, H. Tao, K. Yang, S. Zhang, S.T. Lee, Z. Liu, Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials (2011)

  132. A.L. Antaris, J.T. Robinson, O.K. Yaghi, G. Hong, S. Diao, R. Luong, H. Dai, Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano (2013)

  133. H.T. Chou, T.P. Wang, C.Y. Lee, N.H. Tai, H.Y. Chang, Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Materials Science and Engineering: C (2013)

  134. K. Welsher, S.P. Sherlock, H. Dai, Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proceedings of the National Academy of Sciences of the United States of America (2011)

  135. G. Hong, J.C. Lee, J.T. Robinson, U. Raaz, L. Xie, N.F. Huang, J.P. Cooke, H. Dai, Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nature Medicine (2012)

  136. J.T. Robinson, K. Welsher, S.M. Tabakman, S.P. Sherlock, H. Wang, R. Luong, H. Dai, High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research 3(11), 779–793 (2010)

    Article  CAS  Google Scholar 

  137. F. Zhou, S. Wu, S. Song, W.R. Chen, D.E. Resasco, D. Xing, Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials (2012)

  138. M. Zhou, S. Liu, Y. Jiang, H. Ma, M. Shi, Q. Wang, W. Zhong, W. Liao, M.M.Q. Xing, Doxorubicin-loaded single wall nanotube thermo-sensitive hydrogel for gastric cancer chemo-photothermal therapy. Advanced Functional Materials (2015)

  139. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, H. Dai, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nature Nanotechnology (2007)

  140. R.L. Hood, W.F. Carswell, A. Rodgers, M.A. Kosoglu, M.N. Rylander, D. Grant, J.L. Robertson, C.G. Rylander, Spatially controlled photothermal heating of bladder tissue through single-walled carbon nanohorns delivered with a fiberoptic microneedle device. Lasers in Medical Science (2013)

  141. R. Marches, C. Mikoryak, R.H. Wang, P. Pantano, R.K. Draper, E.S. Vitetta, The importance of cellular internalization of antibody-targeted carbon nanotubes in the photothermal ablation of breast cancer cells. Nanotechnology (2011)

  142. N. Huang, H. Wang, J. Zhao, H. Lui, M. Korbelik, H. Zeng, Single-wall carbon nanotubes assisted photothermal cancer therapy: animal study with a murine model of squamous cell carcinoma. Lasers in Surgery and Medicine (2010)

  143. L. Beqa, Z. Fan, A.K. Singh, D. Senapati, P.C. Ray, Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Applied Materials & Interfaces (2011)

  144. J.G. Duque, L. Cognet, A.N.G. Parra-Vasquez, N. Nicholas, H.K. Schmidt, M. Pasquali, Stable luminescence from individual carbon nanotubes in acidic, basic, and biological environments. Journal of the American Chemical Society (2008)

  145. Wu, G., Zhou, J., and Dong, J. (2007) Raman modes of the deformed single-wall carbon nanotubes. Phys. Rev. B, 72

  146. Meng, L., Niu, L., Li, L., Lu, Q., Fei, Z., and Dyson, P.J. (2012) Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy. Chem. - A Eur. J

  147. Ogbodu, R.O., Ndhundhuma, I., Karsten, A., and Nyokong, T. (2015) Photodynamic therapy effect of zinc monoamino phthalocyanine-folic acid conjugate adsorbed on single walled carbon nanotubes on melanoma cells. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc

  148. R.O. Ogbodu, J.L. Limson, E. Prinsloo, T. Nyokong, Photophysical properties and photodynamic therapy effect of zinc phthalocyanine-spermine-single walled carbon nanotube conjugate on MCF-7 breast cancer cell line. Synthetic Metals (2015)

  149. P. Zhang, H. Huang, J. Huang, H. Chen, J. Wang, K. Qiu, D. Zhao, L. Ji, H. Chao, Noncovalent ruthenium (II) complexes-single-walled carbon nanotube composites for bimodal photothermal and photodynamic therapy with near-infrared irradiation. ACS Applied Materials & Interfaces (2015)

  150. C.H. Wang, Y.J. Huang, C.W. Chang, W.M. Hsu, C.A. Peng, Invitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody. Nanotechnology (2009)

  151. Graham, E.G., MacNeill, C.M., and Levi-Polyachenko, N.H. (2013) Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation. J. Nanoparticle Res

  152. Santoyo, C., Ceron, M.R., and Biener, M.M. (2019) Integration of fullerenes as electron-acceptors in 3D graphene networks

  153. Grebinyk, A., Prylutska, S., Chepurna, O., Grebinyk, S., Prylutskyy, Y., Ritter, U., Ohulchanskyy, T.Y., Matyshevska, O., Dandekar, T., and Frohme, M. (2019) Synergy of chemo- and photodynamic therapies with C60 fullerene-doxorubicin nanocomplex. Nanomaterials

  154. Marangon, I., Ménard-Moyon, C., Silva, A.K.A., Bianco, A., Luciani, N., and Gazeau, F. (2016) Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes. Carbon N. Y., 97 (Complete), 110–123

  155. L. Cheng, C. Wang, L. Feng, K. Yang, Z. Liu, Functional nanomaterials for phototherapies of cancer. Chemical Reviews (2014)

  156. Mroz, P., Xia, Y., Asanuma, D., Konopko, A., Zhiyentayev, T., Huang, Y.Y., Sharma, S.K., Dai, T., Khan, U.J., Wharton, T., and Hamblin, M.R. (2011) Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine Nanotechnology, Biol. Med

  157. S. Grobmyer, V. Krishna, Minimally invasive cancer therapy using polyhydroxy fullerenes. European Journal of Radiology 81, S51–S53 (2012)

    Article  Google Scholar 

  158. V. Krishna, A. Singh, P. Sharma, N. Iwakuma, Q. Wang, Q. Zhang, J. Knapik, H. Jiang, S.R. Grobmyer, B. Koopman, B. Moudgil, Polyhydroxy fullerenes for non-invasive cancer imaging and therapy. Small (2010)

  159. Z. Chen, L. Ma, Y. Liu, C. Chen, Applications of functionalized fullerenes in tumor theranostics. Theranostics 2(3), 238–250 (2012)

    Article  CAS  Google Scholar 

  160. A. Ikeda, M. Akiyama, T. Ogawa, T. Takeya, Photodynamic activity of liposomal photosensitizers via energy transfer from antenna molecules to [60]fullerene. ACS Medicinal Chemistry Letters (2010)

  161. Tabata, Y., Murakami, Y., and Ikada, Y. (1997) Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Japanese J. Cancer Res

  162. J. Fan, G. Fang, F. Zeng, X. Wang, S. Wu, Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small (2013)

  163. D.J. Lee, Y.S. Ahn, Y.S. Youn, E.S. Lee, Poly (ethylene glycol)-crosslinked fullerenes for high efficient phototherapy. Polymers for Advanced Technologies (2013)

  164. J. Shi, Y. Liu, L. Wang, J. Gao, J. Zhang, X. Yu, R. Ma, R. Liu, Z. Zhang, A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomaterialia (2014)

  165. J. Shi, L. Wang, J. Gao, Y. Liu, J. Zhang, R. Ma, R. Liu, Z. Zhang, A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials (2014)

  166. Eatemadi, A., Daraee, H., Karimkhanloo, H., Kouhi, M., Zarghami, N., Akbarzadeh, A., Abasi, M., Hanifehpour, Y., and Joo, S.W. (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res. Lett., 9 (1), 393

  167. S.K. Sharma, L.Y. Chiang, M.R. Hamblin, Photodynamic therapy with fullerenes in vivo: reality or a dream? Nanomedicine (London, England) 6(10), 1813–1825 (2011)

    Article  CAS  Google Scholar 

  168. X. Guo, R. Ding, Y. Zhang, L. Ye, X. Liu, C. Chen, Z. Zhang, Y. Zhang, Dual role of photosensitizer and carrier material of fullerene in micelles for chemo-photodynamic therapy of cancer. Journal of Pharmaceutical Sciences (2014)

Download references

Acknowledgements

This work was funded by Yıldız Technical University under the contract number 2016-07-04-YL10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Bülent ÜSTÜNDAĞ.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GÜRBÜZ, B., AYAN, S., BOZLAR, M. et al. Carbonaceous nanomaterials for phototherapy: a review. emergent mater. 3, 479–502 (2020). https://doi.org/10.1007/s42247-020-00118-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00118-w

Keywords

Navigation