Skip to main content

The use of artificial neural networks to control the concentration of a model drug released acoustically

Abstract

Liposomes are designed to encapsulate chemotherapy drugs used in cancer treatment. Their small size (nano-scale) allows them to extravagate through the leaky vascular surroundings of the tumor. Ultrasound waves can be used as an external trigger to control drug release from these liposomes. It is essential that the therapeutic dose is released as cancer cells can develop drug resistance, in part due to the concentration levels of the chemotherapeutic agent dipping below therapeutic levels during the treatment. To address this issue, this study proposes a feedback drug release controller based on model predictive control theory (MPC) and neural networks (NN). Our preliminary simulation results suggest that using a feedback controller is capable of keeping drug concentration levels, in the tumor site, at or above therapeutic levels. This is achieved by controlling the amount of acoustic drug release from these lipid-based nanocarriers, thus ensuring a controlled, safe, and effective therapeutic dose.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J.A. McKnight, Clin. Tech. Small Anim. Pract. 18, 2 (2003)

    Article  Google Scholar 

  2. W.H. De Jong, P.J.A. Borm, Int. J. Nanomedicine 3, 2 (2008)

    Google Scholar 

  3. X.-J. Liang, C. Chen, Y. Zhao, P.C. Wang, Methods Mol Biol, 596 (2010)

  4. S.E. Ahmed, A.M. Martins, G.A. Husseini, J. Drug Target. 23, 1 (2015)

    Article  Google Scholar 

  5. T. A Nishita, Osaka City Med. J. 44, 1 (1998)

  6. H.G. Moussa, A. M. M, G.A. Husseini, Current Cancer Drug Targets 15, 4 (2015)

    Article  Google Scholar 

  7. G.T. Noble, J.F. Stefanick, J.D. Ashley, T. Kiziltepe, B. Bilgicer, Trends Biotechnol. 32, 1 (2014)

    Article  Google Scholar 

  8. B. Bhushan, V. Khanadeev, B. Khlebtsov, N. Khlebtsov, P. Gopinath, Adv. Colloid Interface Sci 246 (2017)

  9. M.L. Immordino, F. Dosio, L. Cattel, Int. J. Nanomedicine 1, 3 (2006)

    Article  Google Scholar 

  10. Y. Nakamura, A. Mochida, P.L. Choyke, H. Kobayan Bioconjug, Chem. 27, 10 (2016)

    Google Scholar 

  11. U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca, W. Zamboni, O.C. Farokhzad, S.T. Barry, A. Gabizon, P. Grodzinski, D.C. Blakey, Cancer Res. 73, 8 (2013)

    Article  Google Scholar 

  12. J.I. Hare, T. Lammers, M.B. Ashford, S. Puri, G. S,torm, S.T. Barry, Adv. Drug Deliv. Rev. 108 (2017)

  13. A.A. Manzoor, L.H. Lindner, C.D. Landon, J.-Y. Park, A.J. Simnick, M.R. Dreher, S. Das, G. Hanna, W. Park, A. Chilkoti, Cancer Res. 72, 21 (2012)

    Article  Google Scholar 

  14. A.W. El-Kareh, T.W. Secomb, Neoplasia 2, 4 (2000)

    Article  Google Scholar 

  15. M.J. Turk, J.A. Reddy, J.A. Chmielewski, P.S. Low, Biochim. Biophys. Acta (BBA)-Biomembranes 1, 1559 (2002)

    Google Scholar 

  16. L. Zhu, P. Kate, V.P. Torchilin, ACS Nano 6, 4 (2012)

    Google Scholar 

  17. D. Needham, G. Anyarambhatla, G. Kong, M.W. Dewhirst, Cancer Res. 60, 5 (2000)

    Google Scholar 

  18. W.G. Pitt, G.A. Husseini, B.J. Staples, Expert Opin. Drug Deliv. 1, 1 (2004)

    Article  Google Scholar 

  19. S.M. Chowdhury, T. Lee, J.K. Willmann, Ultrasonography 36, 3 (2017)

    Article  Google Scholar 

  20. L. Li, T.L.M. ten Hagen, M. Hossann, R. Süss, G.C. van Rhoon, A.M.M. Eggermont, D. Haemmerich, G.A. Koning, J. Control. Release 168, 2 (2013)

    Google Scholar 

  21. N. Saniei, Heat Transf. Eng. 30, 12 (2009)

    Article  Google Scholar 

  22. G.F. Baronzio, E.D. Hager, Hyperthermia in cancer treatment: a primer. Springer Science & Business Media (2008)

  23. N.Y. Rapoport, A.M. Kennedy, J.E. Shea, C.L. Scaife, K.-H. Nam, J. Control. Release 138, 3 (2009)

    Article  Google Scholar 

  24. S.K. Cool, B. Geers, S. Roels, S. Stremersch, K. Vanderperren, J.H. Saunders, S.C. De Smedt, J. Demeester, N.N. Sanders, J. Control. Release 172, 3 (2013)

    Article  Google Scholar 

  25. P. Wust, B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, P.M. Schlag, Lancet Oncol. 3, 8 (2002)

    Article  Google Scholar 

  26. C. Oerlemans, R. Deckers, G. Storm, W.E. Hennink, J.F.W. Nijsen, J. Control. Release 168, 3 (2013)

    Article  Google Scholar 

  27. J. R. Lattin, D. M. Belnap, and W. G. Pitt, Colloids Surfaces B Biointerfaces 89 (2012)

  28. C.A. Herrera-Cáceres, A. Ibeas, J. Frankl. Inst. 353, 18 (2016)

    Article  Google Scholar 

  29. A. Rahideh, M. Hasan Shaheed, J. Frankl. Inst. 348, 8 (2011)

    Article  Google Scholar 

  30. E. Harati, H. Ahmadi Noubari, J. Frankl. Inst. 353, 15 (2016)

    Article  Google Scholar 

  31. G.A. Husseini, M.A. Diaz de la Rosa, E.O. AlAqqad, S. Al Mamary, Y. Kadimati, A. Al Baik, W.G. Pitt, J. Frankl. Inst. 348, 1 (2011)

    Article  Google Scholar 

  32. G.A. Husseini, N.M. Abdel-Jabbar, F.S. Mjalli, W.G. Pitt, A. Al-Mousa, J. Frankl. Inst. 348, 7 (2011)

    Google Scholar 

  33. W. Jiang, H. Wang, J. Lu, W. Qin, G. Cai, J. Frankl. Inst. 354, 7 (2017)

    Article  Google Scholar 

  34. J. M. Maciejowski, Annu. Rev. Control 23 (1999)

  35. P.V. Torchilin, V.P. Torchilin, V. Torchilin, V. Weissig, Liposomes: a practical approach. Oxford University Press (2003)

  36. B.S. Leon, A.Y. Alanis, E.N. Sanchez, F. Ornelas-Tellez, E. Ruiz-Velazquez, J. Frankl. Inst. 349, 5 (2012)

    Article  Google Scholar 

  37. B. Vatankhah, M. Farrokhi, J. Frankl. Inst. 354, 13 (2017)

    Google Scholar 

  38. P. Gupta, N.K. Sinha, J. Frankl. Inst. 336, 4 (1999)

    Article  Google Scholar 

  39. E.F. Camacho, C.B. Alba, Model predictive control. Springer Science & Business Media (2013)

  40. A. Hijazy, H. Al – Smoudi, M. Swedan, N. Qaddoum, H. Al – Nashash, and K. G. Ramesh, J. Franklin Inst. 343, 4 (2006)

Download references

Funding

This work was financially supported by the American University of Sharjah Faculty Research Grants (FRGs and eFRGs), Al-Jalila Foundation (AJF 2015555), Al Qasimi Foundation, Patient’s Friends Committee-Sharjah, the Takamul program, the Technology Innovation Pioneer (TIP) program, and Dana Gas Endowed Chair for Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghaleb A. Husseini.

Electronic supplementary material

ESM 1

(PDF 986 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moussa, H.G., Husseini, G.A., Ahmad, S.E. et al. The use of artificial neural networks to control the concentration of a model drug released acoustically. emergent mater. 3, 503–513 (2020). https://doi.org/10.1007/s42247-020-00077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-020-00077-2

Keywords

  • Model predictive control (MPC)
  • Drug delivery
  • Liposomes
  • Neural networks (NN)