Skip to main content

Advertisement

Log in

Potential of Raman spectroscopy towards understanding structures of carbon-based materials and perovskites

  • Review Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Sp3 and sp2 hybridised carbon materials have been exploited for myriad applications owing to their unique electronic features. Novel carbon materials and its composites are synthesised by researchers with improved physico-chemical properties for various applications. These novel materials need to be characterised to decipher the structures. Vibrational spectroscopic studies have been used to understand the lattice dynamics of such carbon materials for the last six decades. Raman spectroscopy in particular has been a unique technique in such investigations as it provides bond-specific information at a molecular level which is desirable in understanding the microstructure of carbon. In this review, we highlight the potential of Raman spectroscopy to study the microstructure of different carbon allotropes such as graphene, carbon nanotubes, fullerene, and carbon nitride and its composites. In addition, perovskites has been receiving a lot of attention recently as the scientific community has realised their potential in the areas of material science and energy storage and conversion. This review also covers a few aspects of Raman spectroscopic studies of oxide and halide perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Jorio, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene related systems (John Wiley & Sons, 2010)

  2. M. Cao, C. Han, X. Wang, M. Zhang, Y. Zhang, J. Shu, H. Yang, X. Fang, J. Yuan, J. Mater. Chem. C 6, 4586–4602 (2018)

    CAS  Google Scholar 

  3. J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Adv. Mater. 30, 1704386 (2018)

    Google Scholar 

  4. T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L.K. Shrestha, H. Sakamoto, K. Itami, K. Ariga Angew, Carbon nanosheets by morphology-retained carbonization of two-dimensional assembled anisotropic carbon nanorings. Chem. Int. Ed. 57, 9679–9683 (2018)

    CAS  Google Scholar 

  5. C.N.R. Rao, K. Pramoda, Borocarbonitrides, BxCyNz, 2D nanocomposites with novel properties. Bull. Chem. Soc. Jpn. 92, 441–468 (2019)

    CAS  Google Scholar 

  6. W.-J. Yin, B. Weng, J. Ge, Q. Sun, Z. Li, Y. Yan, Energy Environ. Sci. 12(442–462) (2019)

    CAS  Google Scholar 

  7. F.-C. Chen, Adv. Optical Mater 7, 1800662–1800686 (2019)

    Google Scholar 

  8. R.K. Ulaganathan, Y.-H. Chang, D.-Y. Wang, S.-S. Li, Bull. Chem. Soc. Jpn. 91, 761–771 (2018)

    CAS  Google Scholar 

  9. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10(3), 751–758 (2010)

    CAS  Google Scholar 

  10. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    CAS  Google Scholar 

  11. S. Sil, R. Gautam, S. Umapathy, edited by V.P. Gupta (Elsevier) pp 117–146 (2018)

  12. S. Sil, N. Kuhar, S. Acharya, S. Umapathy, is chemically synthesized graphene ‘really’ a unique substrate for SERS and fluorescence quenching? Sci. Rep. 3, 3336 (2013)

    Google Scholar 

  13. M.S. Dresselhaus, A. Jorio, R. Saito, Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy. Annu. Rev. Condens. Matter Phys. 1, 89–108 (2010)

    CAS  Google Scholar 

  14. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CAS  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    CAS  Google Scholar 

  16. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    CAS  Google Scholar 

  17. F. Guinea, A.H. Castro, N. Neto, M.R. Peres, Phys. Rev. B 73, 245426 (2006)

    Google Scholar 

  18. M. Koshino, T. Ando, Electronic structures and optical absorption of multilayer graphenes. Solid State Commun. 149, 1123–1127 (2009)

    CAS  Google Scholar 

  19. S. Reich, C. Thomsen, Phil. Trans. R. Soc. London A362, 2271 (2004)

    Google Scholar 

  20. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    CAS  Google Scholar 

  21. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 7, 238 (2007)

    CAS  Google Scholar 

  22. Z. Ni, Y. Wang, T. Yu, Z.X. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1, 273–291 (2008)

    CAS  Google Scholar 

  23. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nature Nanotech 3, 210 (2008)

    CAS  Google Scholar 

  24. P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012)

    CAS  Google Scholar 

  25. J.-B. Wu, X. Zhang, M. Ijas, W.-P. Han, X.-F. Qiao, X.-L. Li, D.-S. Jiang, A.C. Ferrari, P.-H. Tan, Nat. Commun. 5, 5309 (2014)

    CAS  Google Scholar 

  26. D.M. Basko, Phys. Rev. B 76, 081405(R) (2007)

    Google Scholar 

  27. D.M. Basko, Theory of resonant multiphonon Raman scattering in graphene. Phys. Rev. B 78, 125418 (2008)

    Google Scholar 

  28. L.M. Malard, M.H.D. Guimarães, D.L. Mafra, M.S.C. Mazzoni, A. Jorio, Group-theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79, 125426 (2009)

    Google Scholar 

  29. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    CAS  Google Scholar 

  30. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C.K. Koo, Z. Shen, J.T.L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small 6(2), 195–200 (2010)

    CAS  Google Scholar 

  31. C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Imaging stacking order in few-layer graphene. Nano Lett.11, 164–169 (2011)

    CAS  Google Scholar 

  32. S.K. Saha, U.V. Waghmare, H.R. Krishnamurthy, A.K. Sood, Phonons in few-layer graphene and interplanar interaction: a first-principles study. Phys. Rev. B 78, 165421 (2008)

    Google Scholar 

  33. J.-B. Wu, Z.-X. Hu, X. Zhang, W.-P. Han, Y. Lu, W. Shi, X.-F. Qiao, M. Ijias, S. Milana, W. Ji, ACS Nano 9, 7440–7449 (2015)

    CAS  Google Scholar 

  34. X. Luo, X. Lu, C. Cong, T. Yu, Q. Xiong, S.Y. Quek, Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials – a general bond polarizability model. Sci. Rep. 5, 14565 (2015)

    CAS  Google Scholar 

  35. L. Liang, A.A. Puretzky, B.G. Sumpter, V. Meunier, Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale 9, 15340–15355 (2017)

    CAS  Google Scholar 

  36. M-L. Lin, T. Chen, W. Lu, Q-H. Tan, P. Zhao, H.-T. Wang, Y. Xu. P.-H. Tana. J. Raman Spectrosc., 49, 46–53 (2018)

  37. C.H. Lui, L.M. Malard, S.H. Kim, G. Lantz, F.E. Laverge, R. Saito, T.F. Heinz, Nano Lett. 12, 5539–5544 (2012)

    CAS  Google Scholar 

  38. M.-L. Lin, F.-R. Ran, X.-F. Qiao, J.-B. Wu, W. Shi, Z.-H. Zhang, X.-Z. Xu, K.-H. Liu, H. Li, P.-H. Tan, Ultralow-frequency Raman system down to 10 cm−1with longpass edge filters and its application to the interface coupling in t(2+2)LGs. Rev. Sci. Instrum. 87, 053122 (2016)

    Google Scholar 

  39. Y. Kawano, Nanotechnology 24(21), 214004 (2013)

    Google Scholar 

  40. L. Britnel, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, L. Eaves, Nature 4, 1794 (2013)

    Google Scholar 

  41. A. Eckmann, J. Park, H. Yang, D. Elias, A.S. Mayorov, G. Yu, R. Jalil, K.S. Novoselov, R.V. Gorbachev, M. Lazzeri, A.K. Geim, C. Casiragh, Raman fingerprint of aligned graphene/h-BN superlattices. Nano Lett. 13, 5242–5246 (2013)

    CAS  Google Scholar 

  42. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 256405 (2009)

    Google Scholar 

  43. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y. Ron, S. Wang, Nature 459, 820 (2009)

    CAS  Google Scholar 

  44. J.M.B. Lopes dos Santos, N.M.R. Peres, A.H.C. Neto, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99, 256802 (2007)

    CAS  Google Scholar 

  45. K. Sato, R. Saito, C. Cong, T. Yu, M.S. Dresselhaus, Zone folding effect in Raman G-band intensity of twisted bilayer graphene. Phys. Rev. B 86, 125414 (2012)

    Google Scholar 

  46. G.S.N. Elie, M.V.O. Moutinho, A.C. Gadelha, A. Righi, L.C. Campos, H.B. Ribeiro, P.-W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, M.A. Pimenta, Nat. Commun. 9, 1221 (2018)

    Google Scholar 

  47. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)

    CAS  Google Scholar 

  48. L. Britnell, R.V. Gorbachev, B.D. Jalil, R. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012)

    CAS  Google Scholar 

  49. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, K.S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)

    CAS  Google Scholar 

  50. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H.C. Neto, K.S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013)

    CAS  Google Scholar 

  51. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, L. Eaves, L.A. Ponomarenko, A.K. Geim, K.S. Novoselov, A. Mishchenko, Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100–103 (2013)

    CAS  Google Scholar 

  52. E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, A. Ouerghi, Sci. Rep. 4, 4558 (2014)

    CAS  Google Scholar 

  53. C.J. Shih, Q.H. Wang, Y. Son, Z. Jin, D. Blankschtein, M.S. Strano, Tuning on–off current ratio and field-effect mobility in a MoS2–graphene heterostructure via Schottky barrier modulation. ACS Nano 8, 5790–5798 (2014)

    CAS  Google Scholar 

  54. K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 8, 826–830 (2013)

    CAS  Google Scholar 

  55. T. Georgiou, R. Jalil, B.D. Belle, L. Britnell, R.V. Gorbachev, S.V. Morozov, Y.J. Kim, A. Gholinia, S.J. Haigh, O. Makarovsky, Nat. Nanotechnol. 8, 100 (2012)

    Google Scholar 

  56. H. Henck, Z. Ben Aziza, D. Pierucci, F. Laourine, F. Reale, P. Palczynski, J. Chaste, M.G. Silly, F. Bertran, P. Le Fèvre, E. Lhuillier, T. Wakamura, C. Mattevi, J.E. Rault, M. Calandra, A. Ouerghi, Electronic band structure of two-dimensional WS2/Graphene van der Waals heterostructures. Phys. Rev. B 97, 155421 (2018)

    CAS  Google Scholar 

  57. H. Li, J.-B. Wu, F. Ran, M.-L. Lin, X.-L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, P.-H. Tan, Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 11, 11714–11723 (2017)

    CAS  Google Scholar 

  58. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004)

    Google Scholar 

  59. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    CAS  Google Scholar 

  60. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    CAS  Google Scholar 

  61. D.S. Bethune, C.H. Kiang, M.S. de Vries, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    CAS  Google Scholar 

  62. A. Thess, R. Lee, P. Nikolaev, Crystalline ropes of metallic carbon nanotubes. Science 273, 483–487 (1996)

    CAS  Google Scholar 

  63. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 86, 1118–1121 (2001)

    CAS  Google Scholar 

  64. G.D. Mahan, Oscillations of a thin hollow cylinder: carbon nanotubes. Phys. Rev. B 65, 235402 (2002)

    Google Scholar 

  65. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005)

    Google Scholar 

  66. J. Maultzsch, H. Telg, S. Reich, C. Thomsen, Radial breathing mode of single-walled carbon nanotubes: optical transition energies and chiral-index assignment. Phys. Rev. B 72, 205438 (2005)

    Google Scholar 

  67. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, M.A. Pimenta, D.R. Saito, Acc. Chem. Res. 35, 1070 (2002)

    CAS  Google Scholar 

  68. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, M.A. Pimenta, R. Saito, Carbon 40, 2043 (2002)

    CAS  Google Scholar 

  69. M.S. Dresselhaus, A. Jorio, A.G. Souza Filho, G. Dresselhaus, Raman spectroscopy on one isolated carbon nanotube. R Saito. Physica B 323, 15–20 (2002)

    CAS  Google Scholar 

  70. S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari, F. Mauri, Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 75, 035427 (2007)

    Google Scholar 

  71. M. Lazzeri, S. Piscanec, F. Mauri, A.C. Ferrari, Phonon linewidths and electron-phonon coupling in graphite and nanotubes. J. Robertson. Phys. Rev. B 73, 155426 (2006)

    Google Scholar 

  72. N. Caudal, A.M. Saitta, M. Lazzeri, F. Mauri, Kohn anomalies and nonadiabaticity in doped carbon nanotubes. Phys. Rev. B 75, 115423 (2007)

    Google Scholar 

  73. A.M. Rao, A. Jorio, M.A. Pimenta, M.S.S. Dantas, R. Saito, G. Dresselhaus, M.S. Dresselhaus, Polarized Raman study of aligned multiwalled carbon nanotubes. Phys. Rev. Lett. 84, 1820–1823 (2000)

    CAS  Google Scholar 

  74. X. Zhao, Y. Ando, L.C. Qin, H. Kataura, Y. Maniwa, R. Saito, Radial breathing modes of multiwalled carbon nanotubes. Chem. Phys. Lett. 361, 169–174 (2002)

    CAS  Google Scholar 

  75. X. Zhao, Y. Ando, L.-C. Qin, H. Kataura, Y. Maniwa, R. Saito, Multiple splitting ofG-band modes from individual multiwalled carbon nanotubes. Appl. Phys. Lett. 81, 2550–2552 (2002)

    CAS  Google Scholar 

  76. A. Das, A.K. Sood, A. Govindaraj, A.M. Saitta, M. Lazzeri, F. Mauri, C.N.R. Rao, Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 99, 136803 (2007)

    Google Scholar 

  77. H. Farhat, H. Son, G.G. Samsonidze, S. Reich, M.S. Dresselhaus, Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. J. Kong. Phys. Rev. Lett. 99, 145506 (2007)

    CAS  Google Scholar 

  78. Y. Wu, J. Maultzsch, E. Knoesel, B. Chandra, M. Huang, M.Y. Sfeir, L.E. Brus, J. Hone, T.F. Heinz, Variable electron-phonon coupling in isolated metallic carbon nanotubes observed by Raman scattering. Phys. Rev. Lett. 99, 027402 (2007)

    Google Scholar 

  79. A. Das, A.K. Sood, Phys. Rev. B79, 235429 (2009)

    Google Scholar 

  80. D. Jariwalaa, V.K. Sangwana, C.-C. Wua, P.L. Prabhumirashia, M.L. Geiera, T.J. Marksa, L.J. Lauhona, M.C. Hersama, PNAS 110, 18076 (2013)

    Google Scholar 

  81. H.N. Tran, J.C. Blancon, J.R. Huntzinger, R. Arenal, V.N. Popov, A.A. Zahab, A. Ayari, A. San-Miguel, F. Vall’ee, N. Del Fatti, J.L. Sauvajol, M. Paillet, Phys. Rev. B 94, 075430 (2016)

    Google Scholar 

  82. M. Rontani, Anomalous magnetization of a carbon nanotube as an excitonic insulator. Phys. Rev. B 90, 195415 (2014)

    Google Scholar 

  83. D. Varsano, S. Sorella, D. Sangalli, M. Barborini, S. Corni, E. Molinari, M. Rontani, Nature Comm 8, 1461 (2017)

    Google Scholar 

  84. H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188–190 (1998)

    CAS  Google Scholar 

  85. L.S. Schadler, S.C. Giannaris, P.M. Ajayan, Appl. Phys. Lett. 73, 2 (1998)

    Google Scholar 

  86. T.C. Hirschmann, P.T. Araujo, H. Muramatsu, X. Zhang, K. Nielsch, Y.A. Kim, M.S. Dresselhaus, Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy. ACS Nano 7, 2381–2387 (2013)

    CAS  Google Scholar 

  87. T.C. Hirschmann, P.T. Araujo, H. Muramatsu, J.F. Rodriguez-Nieva, M. Seifert, K. Nielsch, Y.A. Kim, M.S. Dresselhaus, Role of intertube interactions in double- and triple-walled carbon nanotubes. ACS Nano 8, 1330–1341 (2014)

    CAS  Google Scholar 

  88. T.C. Hirschmann, M.S. Dresselhaus, H. Muramatsu, M. Seifert, U. Wurstbauer, E. Parzinger, K. Nielsch, Y.A. Kim, P.T. Araujo, G′band in double- and triple-walled carbon nanotubes: a Raman study. Phys. Rev. B 91, 075402 (2015)

    Google Scholar 

  89. P.T. Araujo, N.M. Barbosa Neto, M.E.S. Sousa, R.S. Angelica, S. Simoes, M.F.G. Vieira, M.S. Dresselhaus, M.A.L. dos Reis, Carbon 124, 348 (2017)

    CAS  Google Scholar 

  90. J. Kennedy, F. Fang, J. Futter, J. Laveneur, P.P. Murmu, G.N. Panin, T.W. Kang, E. Manikandan, Diam. Relat. Mater. 71, 79 (2017)

    CAS  Google Scholar 

  91. H.W. Kroto, J.R. Heath, S.C. Obrien, R.F. Curl, R.E. Smalley, Nature 318(6042), 162 (1985)

    CAS  Google Scholar 

  92. K. Hans, R. Pfeiffer, M. Hulman, C. Kramberger, Phil. Trans. R. Soc. Lond. A 362, 2375 (2004)

    Google Scholar 

  93. M.R. Benzigar, S. Joseph, H. Ilbeygi, D.H. Park, S. Sarkar, G. Chandra, S. Umapathy, S. Srinivasan, S.N. Talapaneni, A. Vinu, Highly crystalline mesoporous C60 with ordered pores: a class of nanomaterials for energy applications. Angew. Chem. Int. Ed. 57, 569–573 (2018)

    CAS  Google Scholar 

  94. K. Ikeda, K. Uosaki, Resonance hyper-Raman scattering of fullerene C60 microcrystals. J. Phys. Chem. A 112, 790–793 (2008)

    CAS  Google Scholar 

  95. M.R. Benzigar, S. Joseph, A.V. Baskar, D.H. Park, G. Chandra, S. Umapathy, S.N. Talapaneni, A. Vinu, Ordered mesoporous C70 with highly crystalline pore walls for energy applications. Adv. Funct. Mater. 28, 1803701 (2018)

    Google Scholar 

  96. A.V. Soldatov, G. Roth, A. Dzyabchenko, D. Johnels, S. Lebedkin, C. Meingast, B. Sundqvist, M. Haluska, H. Kuzmany, Topochemical polymerization of C70 controlled by monomer crystal packing. Science 293, 680–683 (2001)

    CAS  Google Scholar 

  97. J. Onoe, A. Nakao, K. Takeuchi, XPS study of a photopolymerized C60 film. Phys. Rev. B 55, 10051–10056 (1997)

    CAS  Google Scholar 

  98. P. Sharma, R. Singhal, R. Vishnoi, R. Kaushik, M.K. Banerjee, D.K. Avasthi, V. Ganesan, Ion track diameter in fullerene C70 thin film using Raman active vibrational modes of C70 molecule. Vacuum 123, 35–41 (2016)

    CAS  Google Scholar 

  99. D. Liu, M. Yao, L. Wang, Q. Li, W. Cui, B. Liu, R. Liu, B. Zou, T. Cui, B. Liu, J. Liu, B. Sundqvist, T. Wågberg, Pressure-induced phase transitions of C70 nanotubes. J. Phys. Chem. C 115, 8918–8922 (2011)

    CAS  Google Scholar 

  100. L.J. Terminello, D.K. Shuh, F.J. Himpsel, D.A. Lapiano-Smith, J. Stöhr, D.S. Bethune, G. Meijer, Unfilled orbitals of C60 and C70 from carbon K-shell X-ray absorption fine structure. Chem. Phys. Lett. 182, 491–496 (1991)

    CAS  Google Scholar 

  101. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009)

    CAS  Google Scholar 

  102. Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, Thylakoid-inspired multishell g-c3n4nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1), 1103–1112 (2017)

    CAS  Google Scholar 

  103. X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016)

    CAS  Google Scholar 

  104. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014)

    Google Scholar 

  105. K. Srinivasu, B. Modak, S.K. Ghosh, J. Phys. Chem. C 118(46), 26479 (2014)

    CAS  Google Scholar 

  106. Q. Guo, Y. Zhang, J. Qiu, G. Dong, Engineering the electronic structure and optical properties of g-C3N4 by non-metal ion doping. J. Mater. Chem. C 4(28), 6839–6847 (2016)

    CAS  Google Scholar 

  107. D. Das, S.L. Shinde, K.K. Nanda, ACS Appl. Mater. Interfaces 8(3), 2181 (2016)

    CAS  Google Scholar 

  108. M. Tahir, C. Cao, N. Mahmood, F.K. Butt, A. Mahmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, I. Aslam, ACS Appl. Mater. Interfaces 6(2), 1258–1265 (2013)

    Google Scholar 

  109. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, Appl. Surf. Sci. 405, 329–336 (2017)

    CAS  Google Scholar 

  110. Z. Tong, D. Yang, Z. Li, Y. Nan, F. Ding, Y. Shen, Z. Jiang, Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis. ACS Nano 11(1), 1103–1112 (2017)

    CAS  Google Scholar 

  111. Q. Guo, Y. Zhang, J. Qiu, G. Dong, Engineering the electronic structure and optical properties of g-C3N4by non-metal ion doping. J. Mater. Chem. C 4(28), 6839–6847 (2016)

    CAS  Google Scholar 

  112. A.Y. Liu, M.L. Cohen, Science 245(4920), 841 (1989)

    CAS  Google Scholar 

  113. A. Naseri, M. Samadi, A. Pourjavadi, A.Z. Moshfegh, S. Ramakrishna, Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J. Mater. Chem. A 5, 23406–23433 (2017)

    CAS  Google Scholar 

  114. M. Zhang, Y.Y. Duan, H.Z. Jia, F. Wang, L. Wang, Z. Su, C.Y. Wang, Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution. Catal. Sci. Technol. 7, 452–458 (2017)

    CAS  Google Scholar 

  115. I.Y. Kim, S. Kim, X. Jin, S. Premkumar, G. Chandra, N.S. Lee, G.P. Mane, S.J. Hwang, S. Umapathy, A. Vinu, Ordered mesoporous C3N5 with a combined triazole and triazine framework and its graphene hybrids for the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 57, 17135–17140 (2018)

    CAS  Google Scholar 

  116. W.C. Peng, X.Y. Li, Synthesis of MoS2/g-C3N4 as a solar light-responsive photocatalyst for organic degradation. Catal. Commun. 49, 63–67 (2014)

    CAS  Google Scholar 

  117. Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 7355–7363 (2011)

    CAS  Google Scholar 

  118. M. Muniz-Miranda, F. Muniz-Miranda, S. Caporali, SERS and DFT study of copper surfaces coated with corrosion inhibitor. Beilstein. J. Nanotechnol 5, 2489–2497 (2014)

    CAS  Google Scholar 

  119. I.Y. Kim, J.M. Lee, T.W. Kim, H.N. Kim, H. Kim, W. Choi, S.J. Hwang, A strong electronic coupling between graphene nanosheets and layered titanate nanoplates: a soft-chemical route to highly porous nanocomposites with improved photocatalytic activity. Small 8, 1038–1048 (2012)

    CAS  Google Scholar 

  120. X. Jin, J. Lim, N.S. Lee, S.J. Hwang, A powerful role of exfoliated metal oxide 2D nanosheets as additives for improving electrocatalyst functionality of graphene. Electrochim. Acta 235, 720–729 (2017)

    CAS  Google Scholar 

  121. C.J. Howarda, H.T. Stokes, Group-theoretical analysis of octahedral tilting in perovskites. Acta Cryst. B 54, 782–789 (1998)

    Google Scholar 

  122. T. Runka, K. Łapsa, A. Łapin’ski, R. Aleksiyko, M. Berkowski, M. Drozdowski, J. Mol. Struct. 704, 281–285 (2004)

    CAS  Google Scholar 

  123. T. Runka, M. Berkowski, M. Drozdowski, J. Mol. Struct. 792–793, 221 (2006)

    Google Scholar 

  124. A. Chopelas, Single-crystal Raman spectra of YAlO3 and GdAlO3: comparison to several orthorhombic ABO3 perovskites. Phys. Chem. Miner. 38, 709–726 (2011)

    CAS  Google Scholar 

  125. M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, C. Thomsen, Phys. Rev. B 59, 4146–4153 (1999)

    CAS  Google Scholar 

  126. M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Raman spectroscopy of orthorhombic perovskitelikeYMnO3andLaMnO3. Phys. Rev. B 57, 2872–2877 (1998)

    CAS  Google Scholar 

  127. S. Venugopalan, M. Dutta, A.K. Ramdas, J.P. Remeika, Magnetic and vibrational excitations in rare-earth orthoferrites: a Raman scattering study. Phys. Rev. B 31, 1490–1497 (1985)

    CAS  Google Scholar 

  128. N. Koshizuka, S. Ushioda, Inelastic-light-scattering study of magnon softening in ErFeO3. Phys. Rev. B 22, 5394–5399 (1980)

    CAS  Google Scholar 

  129. M. Udagawa, K. Kohn, N. Koshizuka, T. Tsushima, K. Tsushima, Influence of magnetic ordering on the phonon Raman spectra in YCrO3 and GdCrO3. Solid State Commun. 16, 779–783 (1975)

    CAS  Google Scholar 

  130. N. Setter, I. Laulicht, Appl. Spectrosc. 3, 526 (1987)

    Google Scholar 

  131. F. Jianga, S. Kojima, C.I. Zhao, C. Feng, J. Appl. Phys. 88, 3608–3612 (2000)

    Google Scholar 

  132. H. Zhenga, G.D.C. de Csete Gyorgyfalva, R. Quimby, H. Bagshaw, R. Ubic, I.M. Reaney, J. Yarwood, Raman spectroscopy of B-site order–disorder in CaTiO3-based microwave ceramics. J. Eur. Ceram. Soc. 23, 2653 (2003)

    Google Scholar 

  133. J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109, 114110 (2011)

    Google Scholar 

  134. K.F. McCarty, H.B. Radousky, D.G. Hinks, Y. Zheng, A.W. Mitchell, T.J. Folkerts, R.N. Shelton, Electron-phonon coupling in superconductingBa0.6K0.4BiO3: a Raman scattering study. Phys. Rev. B 40, 2662–2665 (1989)

    CAS  Google Scholar 

  135. S. Banerjee, R.D. Dae-In Kim, I.P. Robinson, Y. Herman, S. Mao, S. Wong, Appl. Phys. Lett. 89, 223130 (2006)

    Google Scholar 

  136. J. Kreisel, A.M. Glazer, P. Bouvier, G. Lucazeau, High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3perovskite. Phys. Rev. B 63, 174106 (2001)

    Google Scholar 

  137. M. Zaghrioui, A. Bulou, P. Lacorre, P. Laffez, Electron diffraction and Raman scattering evidence of a symmetry breaking at the metal-insulator transition of NdNiO3. Phys. Rev. B 64, 081102 (2001)

    Google Scholar 

  138. M.Y. Chen, C.T. Chia, I.N. Lin, L.J. Lin, C.W. Ahn, S. Nahm, Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering. J. Eur. Ceram. Soc. 26, 1965–1968 (2006)

    CAS  Google Scholar 

  139. A. Hossain, P. Bandyopadhyay, S. Roy, An overview of double perovskites A2B′B″O6 with small ions at A site: synthesis, structure and magnetic properties. J. Alloys Compd. 740, 414–427 (2018)

    CAS  Google Scholar 

  140. B.M. Ezzahi, A. Ider, L. Bih, S. Benmokhtar, M. Azrour, M. Azdouz, J.M. Igartua, P. Lazor, J. Mol. Struct. 985, 339 (2011)

    CAS  Google Scholar 

  141. A. Dias, L.A. Khalam, M.T. Sebastian, R.L. Moreira, Raman-spectroscopic investigation of and perovskites. J. Solid State Chem. 180, 2143–2148 (2007)

    CAS  Google Scholar 

  142. B. Manoun, A. Ezzahi, S. Benmokhtar, A. Ider, P. Lazor, L. Bih, J.M. Igartua, X-ray diffraction and Raman spectroscopy studies of temperature and composition induced phase transitions in Ba2−xSrxZnWO6 (0≤x≤2) double perovskite oxides. J. Alloys Compd. 533, 43–52 (2012)

    CAS  Google Scholar 

  143. Y. Fujioka, J. Frantti, M. Kakihana, Raman scattering studies of the Ba2MnWO6 and Sr2MnWO6 double perovskites. J. Phys. Chem. B 110, 777–783 (2006)

    CAS  Google Scholar 

  144. E.N. Silva, A.P. Ayala, I. Guedes, S.A. Larregola, R.M. Pinacca, M.C. del Viola, J.C. Pedregosa, J. Raman Spectrosc. 40, 1028 (2009)

    CAS  Google Scholar 

  145. M.N. Iliev, H. Guo, A. Gupta, Raman spectroscopy evidence of strong spin-phonon coupling in epitaxial thin films of the double perovskite La2NiMnO6. Appl. Phys. Lett. 90, 151914 (2007)

    Google Scholar 

  146. R.B.M. Filho, A.P. Ayala, W. Carlos, A. de Paschoal, Appl. Phys. Lett. 102, 192902 (2013)

    Google Scholar 

  147. J. Gebhardt, A.M. Rappe, Adv. Mater., 1802697 (2018)

    Google Scholar 

  148. W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, S.-H. Wei, Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015)

    CAS  Google Scholar 

  149. Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3, 18809–18828 (2015)

    CAS  Google Scholar 

  150. C. Quarti, G. Grancini, E. Mosconi, P. Bruno, J.M. Ball, M.M. Lee, The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2014)

    CAS  Google Scholar 

  151. M.A. Perez-Osorio, R.L. Milot, M.R. Filip, J.B. Patel, L.M. Herz, M.B. Johnston, F. Giustino, Vibrational properties of the organic–inorganic halide perovskite CH3NH3PbI3 from theory and experiment: factor group analysis, first-principles calculations, and low-temperature infrared spectra. J. Phys. Chem. C 119, 25703–25718 (2015)

    CAS  Google Scholar 

  152. R.G. Niemann, A.G. Kontos, D. Palles, E.I. Kamitsos, A. Kaltzoglou, F. Brivio, P. Falaras, P.J. Cameron, Halogen effects on ordering and bonding of CH3NH3+in CH3NH3PbX3(X = Cl, Br, I) hybrid perovskites: a vibrational spectroscopic study. J. Phys. Chem. C 120, 2509–2519 (2016)

    CAS  Google Scholar 

  153. L.-Q. Xie, T.-Y. Zhang, C. Liang, N. Guo, W. Yu, G.-K. Liu, J.-R. Wang, J.-Z. Zhou, J.-W. Yan, Y.-X. Zhao, B.-W. Mao, Z.-Q. Tia, Organic–inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. Phys. Chem. Chem. Phys. 18, 18112–18118 (2016)

    CAS  Google Scholar 

  154. P. Pistor, A. Ruiz, A. Cabot, V.R. Izquierdo-Roca, Sci. Rep. 6, 35973 (2016)

    CAS  Google Scholar 

  155. M. Ledinsky, P. Loper, B. Niesen, J. Holovsky, S.-J. Moon, J.-H. Yum, S. De Wolf, A. Fejfar, C. Ballif, J. Phys. Chem. Lett. 6, 401 (2015)

    CAS  Google Scholar 

  156. C. La-o-vorakiat, H. Xia, J. Kadro, T. Salim, D. Zhao, T. Ahmed, Y.M. Lam, J.-X. Zhu, R.A. Marcus, M.-E. Michel-Beyerle, E.E.M. Chia, J. Phys. Chem. Lett. 7, 1 (2016)

    CAS  Google Scholar 

  157. V.H. Damle, L. Gouda, S. Tirosh, Y.R. Tischler, Structural characterization and room temperature low-frequency Raman scattering from MAPbI3 halide perovskite films rigidized by cesium incorporation. ACS Appl. Energy Mater. 1, 6707–6713 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajayan Vinu or Siva Umapathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvarajan, P., Chandra, G., Bhattacharya, S. et al. Potential of Raman spectroscopy towards understanding structures of carbon-based materials and perovskites. emergent mater. 2, 417–439 (2019). https://doi.org/10.1007/s42247-019-00052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00052-6

Keywords

Navigation