Skip to main content
Log in

Exchange bias and large room temperature magnetoresistance in ion beam-synthesized Co nanoparticles in SiO2

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Magnetic nanogranular materials have shown promising magnetic and electron transport properties, offering key advantages for a range of applications from spintronics components to magnetic field sensors. In this paper, the properties of Co nanoparticles synthesized using low-energy ion implantation and electron beam annealing (EBA) on SiO2 were investigated. EBA leads to the growth of crystalline face-centred cubic Co nanoparticles from small nanoparticles within a Co-rich region in the near surface. The as-implanted and EBA samples are ferromagnetic with Curie temperatures above 300 K. The saturated magnetic moment per implanted Co atom was measured to be as high as 4.25 ± 0.5 μB. The moment per Co atom decreases and approaches that of bulk Co with increased EBA time. This suggests that there may be a ferromagnetic Co1-xSixOy phase that has not been previously reported. An exchange bias is observed and proposed to arise from a thin antiferromagnetic CoO layer surrounding the Co nanoparticles. We find a room temperature magnetoresistance as high as 22.8% at 8 T with linear behaviour above ~ 3 T. The linear magnetoresistance is likely to be due to a geometric magnetoresistance that is observed in inhomogeneous nanomaterials containing metallic nanoparticles in a semiconducting matrix. Thus, EBA leads to Co nanoparticles that are expected to be electronically spin polarized but there is no evidence for spin-dependent tunnelling. These unique characteristics could provide the base for novel devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EBA:

Electron beam annealing

RBS:

Rutherford backscattering spectroscopy

PIXE:

Particle-induced X-ray emission

TEM:

Transmission electron microscope

SQUID:

Superconducting quantum interference device

MR:

Magnetoresistance

SAED:

Selected area electron diffraction

TM:

Transition metal

References

  1. M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr, Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304(5677), 1648–1650 (2004)

    Article  CAS  Google Scholar 

  2. S.X. Zhang, R.D. McDonald, A. Shekhter, Z.X. Bi, Y. Li, Q.X. Jia, S.T. Picraux, Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 101(20), 202403 (2012)

    Article  CAS  Google Scholar 

  3. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, et al., Large, non-saturating magnetoresistance in WTe2. Nature 514(7521), 205–208 (2014)

    Article  CAS  Google Scholar 

  4. J. Hu, T.F. Rosenbaum, Classical and quantum routes to linear magnetoresistance. Nat. Mater. 7(9), 697–700 (2008)

    Article  CAS  Google Scholar 

  5. A. Husmann, J.B. Betts, G.S. Boebinger, A. Migliori, T.F. Rosenbaum, M.L. Saboungi, Megagauss sensors. Nature 417(6887), 421–424 (2002)

    Article  CAS  Google Scholar 

  6. Haji-Sheikh, M. J. Compass applications using giant magnetoresistance sensors (GMR). In Giant Magnetoresistance (GMR) Sensors, pp. 157–180. Springer: Berlin Heidelberg, 2013

  7. L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, M.C. Wurz, Recent developments of magnetoresistive sensors for industrial applications. Sensors 15(11), 28665–28689 (2015)

    Article  Google Scholar 

  8. C.K. Yang, C.S. Hwang, J.C. Jan, F.Y. Lin, C. Hwa Chang, M. Fee, M. Christian, Design, fabrication, and performance tests of a HTS superconducting dipole magnet. Appl. Supercond., IEEE Trans 22(3), 4000804–4000804 (2012)

    Article  CAS  Google Scholar 

  9. M. Furuse, M. Okano, S. Fuchino, A. Uchida, J. Fujihira, S. Fujihira, T. Kadono, A. Fujimori, T. Koide, HTS vector magnet for magnetic circular dichroism measurement. Appl. Supercond., IEEE Trans 23(3), 4100704–4100704 (2013)

    Article  Google Scholar 

  10. J. Lenz, S. Edelstein, Magnetic sensors and their applications. IEEE Sensors J. 6(3), 631–649 (2006)

    Article  Google Scholar 

  11. S. Bedant, W. Kleemann, Superparamagnetism. J. Phys. D. Appl. Phys.52, 013001 (2009)

    Article  CAS  Google Scholar 

  12. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (John Wiley and Sons, New Jersey, 2009)

    Google Scholar 

  13. K. Ludwig, J. Hauch, R. Mattheis, K.U. Barholz, G. Reiger, Adapting GMR sensors for integrated devices. Sensors Actuators A 106, 15–18 (2003)

    Article  CAS  Google Scholar 

  14. P. Ripka, Advances in fluxgate sensors. Sensors Actuators A 106, 8–14 (2003)

    Article  CAS  Google Scholar 

  15. J. Leveneur, J. Kennedy, G.V.M. Williams, J. Metson, A. Markwitz, Large room temperature magnetoresistance in ion beam synthesized surface Fe nanoclusters on SiO2. Appl. Phys. Lett. 98, 053111 (2011)

    Article  CAS  Google Scholar 

  16. F.J. Yue, S. Wang, L. Lin, F.M. Zhang, C.H. Li, J.L. Zuo, Y.W. Du, D. Wu, Large low field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature. J. Phys. D. Appl. Phys. 44, 025001 (2011)

    Article  CAS  Google Scholar 

  17. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)

    Article  CAS  Google Scholar 

  18. R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. (200), 359 (1999)

  19. U. Häfeli, W. Schütt, J. Teller, M. Zborowski, Scientific and Clinical Applications of Magnetic Materials (Plenum, New York, 1997)

    Google Scholar 

  20. Y.P. Zeng, Z.W. Liu, H.Y. Yu, Z.G. Zheng, D.C. Zeng, X.S. Gao, Large positive room temperature magnetoresistance in nanogranular FeCo–Si–N thin films. Mater. Lett. 110, 27–30 (2013)

    Article  CAS  Google Scholar 

  21. J. Inoue, S. Maekawa, Theory of tunneling magnetoresistance in granular magnetic films. Phys. Rev. B 53, R11927–R11929 (1996)

    Article  CAS  Google Scholar 

  22. J. Leveneur, D.F. Sanchez, J. Kennedy, P.L. Grande, G.V.M. Williams, J.B. Metson, B.C. Cowie, Iron-based bimagnetic core/shell nanostructures in SiO2: a TEM, MEIS, and energy-resolved XPS analysis. J. Nanopart. Res. 14, 1149 (2012)

    Article  CAS  Google Scholar 

  23. J. Kennedy, J. Leveneur, Y. Takeda, G.V.M. Williams, S. Kupke, D.R.G. Mitchell, A. Markwitz, J.B. Metson, Evolution of the structure and magneto-optical properties of ion beam synthesized iron nanoclusters. J. Mater. Sci. 47, 1127–1134 (2012)

    Article  CAS  Google Scholar 

  24. M.A.S. Boff, R. Hinrichs, B. Canto, F. Mesquita, D.L. Baptista, G.L.F. Fraga, L.G. Pereira, Turn on of new electronic paths in Fe-SiO2 granular thin film. Appl. Phys. Lett. 105(14), 143112 (2014)

    Article  CAS  Google Scholar 

  25. M. Feygenson, X. Teng, S.E. Inderhees, Y. Yiu, W. Du, W. Han, J. Wen, et al., Low-energy magnetic excitations in Co/CoO core/shell nanoparticles. Phys. Rev. B 83, 174414 (2011)

    Article  CAS  Google Scholar 

  26. S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, Exchange anisotropy in oxide passivated Co fine particles. J. Appl. Phys. 73, 6984 (1993)

    Article  Google Scholar 

  27. A. Markwitz, J. Kennedy, Group-IV and V ion implantation into nanomaterials and elemental analysis on the nanometre scale. Int. J. Nanotechnol. 6, 369 (2009)

    Article  CAS  Google Scholar 

  28. D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(181) (2012)

  29. S. Ram, Allotropic phase transformations in HCP, FCC, and BCC metastable structures in Co-nanoparticles. Mater. Sci. Eng. 923, A304–A306 (2001)

    Google Scholar 

  30. T. Nishizawa, K. Ishida, The Co (cobalt) system. Bull. Alloy Phase Diagr. 4, 387–390 (1983)

    Article  Google Scholar 

  31. E. Kondoh, R.A. Donaton, S. Jin, H. Bender, W. Vandervorst, K. Maex, Interaction between Co and SiO2. Appl. Surf. Sci.136, 87 (1998)

  32. Z.L. Zhang, Z.G. Xiao, G.W. Tu, The observation of Co film oxidation on Si and SiO2 substrates. Thin Solid Films 286, 295–298 (1996)

    Article  CAS  Google Scholar 

  33. W.D. Chen, Y.D. Cui, C.C. Hsu, J. Tao, Interaction of Co with Si and SiO2 during rapid thermal annealing. J. Appl. Phys. 69, 7612–7619 (1991)

    Article  CAS  Google Scholar 

  34. C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, CoSi2 formation through SiO2. Thin Solid Films 386, 19–26 (2001)

    Article  CAS  Google Scholar 

  35. Cullity, D.; Stock, S. R. Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Company Inc.: 1978

  36. M.A. Zalich, V.V. Baranauskas, J.S. Riffle, M. Saunders, T.G. St. Pierre, Structural and magnetic properties of oxidatively stable cobalt nanoparticles encapsulated in graphite shells. Chem. Mater.18, 2648 (2006)

    Article  CAS  Google Scholar 

  37. L. Chao, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc.122(26), 6263–6267 (2000)

    Article  CAS  Google Scholar 

  38. V. Dupuis, J.P. Perez, J. Tuaillon, V. Paillard, P. Mélinon, A. Perez, B. Barbara, L. Thomas, S. Fayeulle, J.M. Gay, Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition. J. Appl. Phys. 76(10), 6676–6678 (1994)

    Article  CAS  Google Scholar 

  39. M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon, A. Pérez, Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86(20), 4676 (2001)

    Article  CAS  Google Scholar 

  40. R. Aquino, J. Depeyrot, M.H. Sousa, F.A. Tourinho, E. Dubois, R. Perzynski, Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Phys. Rev. B 72, 184435 (2005)

    Article  CAS  Google Scholar 

  41. R.M. Bozorth, Ferromagnetism (IEEE Press, New York, 1993)

    Book  Google Scholar 

  42. I.M. Billas, A. Châtelain, W.A. de Heer, Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265(5179), 1682 (1994)

    Article  CAS  Google Scholar 

  43. R.C. O’Handley, Modern Magnetic Materials: principles and application (Wiley-Interscience, New York, 1999)

    Google Scholar 

  44. W. Jauch, M. Reehuis, H.J. Bleif, F. Kubanek, P. Pattison, Crystallographic symmetry and magnetic structure of CoO. Phys. Rev. B 64, 052102 (2001)

    Article  CAS  Google Scholar 

  45. Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J.H. Brewer, E.J. Ansaldo, G.D. Morris, Spatial inhomogeneity of magnetic moments in the cobalt oxide spinel Co3O4. Phys. Rev. B 75, 054424 (2007)

    Article  CAS  Google Scholar 

  46. K. Ishida, T. Nishizawa, M.E. Schlesinger, The Co-Si (cobalt-silicon) system. J. Phase Equilib. 12, 578–586 (1991)

    Article  CAS  Google Scholar 

  47. J. Nogués, I.K. Schuller, Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999)

    Article  Google Scholar 

  48. J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baró, Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)

    Article  Google Scholar 

  49. E. Menendez, J. Demeter, J. Van Eyken, P. Nawrocki, E. Jedryka, M. Wojcik, J. Francisco Lopez-Barbera, J. Nogués, A. Vantomme, K. Temst, Improving the magnetic properties of Co–CoO systems by designed oxygen implantation profiles. ACS Appl. Mater. Interfaces 5(10), 4320–4327 (2013)

    Article  CAS  Google Scholar 

  50. R.P. van Gorkom, J. Caro, T.M. Klapwijk, S. Radelaar, Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial Fe films. Phys. Rev. B 63, 134432 (2001)

    Article  CAS  Google Scholar 

  51. H. Akinaga, Magnetoresistive switch effect in metal/semiconductor hybrid granular films: extremely huge magnetoresistance effect at room temperature. Semicond. Sci. Technol. 17, 322–326 (2002)

    Article  CAS  Google Scholar 

  52. S.A. Sonin, T. Thio, D.R. Hines, J.J. Heremans, Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289, 1530 (2000)

    Article  Google Scholar 

  53. M.H. Parish, P.B. Littlewood, Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005)

    Article  CAS  Google Scholar 

  54. T.A. Komissarova, M.A. Shakhov, V.N. Jmerik, R.V. Parfeniev, P. Paturi, X. Wang, A. Yoshikawa, S.V. Ivanov, Large magnetoresistance effect in InN epilayers. Phys. Rev. B 82, 245204 (2010)

    Article  CAS  Google Scholar 

  55. F. Xiu, Y. Wang, K. Wong, Y. Zhou, X. Kou, J. Zou, K.L. Wang, MnGe magnetic nanocolumns and nanowells. Nanotechnology 21, 255602 (2010)

    Article  CAS  Google Scholar 

  56. H.G. Johnson, S.P. Bennett, R. Barua, L.H. Lewis, D. Heiman, Universal properties of linear magnetoresistance in strongly disordered MnAs-GaAs composite semiconductors. Phys. Rev. B 82, 085202 (2010)

    Article  CAS  Google Scholar 

  57. H. Xu, J.X. Lu, Y. Xia, J. Yin, Z. Liu, Non-saturating linear magnetoresistance in phase separated amorphous Ag10Ge15Te75 films. Solid Sate Commun. 152, 1150–1154 (2012)

    Article  CAS  Google Scholar 

  58. K. Mackay, M. Bonfim, D. Givord, A. Fontaine, 50 T pulsed magnetic fields in microcoils. J. Appl. Phys. 87(4), 1996–2002 (2000)

    Article  CAS  Google Scholar 

  59. P. Lobotka, J. Dérer, I. Vávra, C. de Julián Fernández, G. Mattei, P. Mazzoldi, Single-electron transport and magnetic properties of Fe− Si O 2 nanocomposites prepared by ion implantation. Phys. Rev. B 75(2), 024423 (2007)

    Article  CAS  Google Scholar 

  60. G.L. Zhang, W.H. Liu, F. Xu, W.X. Hu, Preparation of Fe nanocrystalline in SiO2 by ion implantation. Appl. Phys. Lett. 61(21), 2527–2529 (1992)

    Article  CAS  Google Scholar 

  61. Van Cuong, G., Anh Tuan, N., Tuan Anh, N., Van Tuong, D., Anh Tue, N., Tuyet Nga, N. and Phuong Lien, D., 2015. Structural characteristics and magnetic properties of Al2O3 matrix-based Co-cermet nanogranular films. Journal of Materials, 2015

  62. O. Chayka, L. Kraus, P. Lobotka, V. Sechovsky, T. Kocourek, M. Jelinek, High field magnetoresistance in Co–Al–O nanogranular films. J. Magn. Magn. Mater. 300(2), 293–299 (2006)

    Article  CAS  Google Scholar 

  63. T. Zhu, Y.J. Wang, H.W. Zhao, J.G. Zhao, W.S. Zhan, Tunneling magnetoresistance and magnetic properties of Fe-Al2O3nanogranular films. J. Appl. Phys. 89(11), 6877–6879 (2001)

    Article  CAS  Google Scholar 

  64. B.J. Hattink, M.G. del Muro, Z. Konstantinović, X. Batlle, A. Labarta, M. Varela, Tunneling magnetoresistance in Co− ZrO 2 granular thin films. Phys. Rev. B 73(4), 045418 (2006)

    Article  CAS  Google Scholar 

  65. J. Kennedy, J. Leveneur, J. Metson, G.V.M. Williams, S. Rubanov, A. Markiwtz, Structural and chemical changes during the ion beam synthesis of Fe nanoclusters in Silicon nitride. Conference: International Conferance on Advanced MaterialsAt (Loyola College, Chennai, India, 2012)

    Google Scholar 

  66. Yildirim, O., Cornelius, S., Smekhova, A., Zykov, G., Gan'shina, E.A., Granovsky, A.B., Hübner, R., Bähtz, C. and Potzger, K., 2015. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO2: Co films produced by cobalt ion implantation. Journal of Applied Physics, 117(18), p.183901

  67. S. Ahmed, X. Ding, P.P. Murmu, N.N. Bao, R. Liu, J. Kennedy, J. Ding, J.B. Yi, Magnetic properties of Co doped WSe2 by implantation. J. Alloys Compd. 731, 25–31 (2018)

    Article  CAS  Google Scholar 

  68. M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J. Mater. Sci. Mater. Electron. 26(9), 6814–6818 (2015)

    Article  CAS  Google Scholar 

  69. K. Liu, L. Zhao, P. Klavins, F.E. Osterloh, H. Hiramatsu, Extrinsic magnetoresistance in magnetite nanoparticles. J. Appl. Phys. 93(10), 7951–7953 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance in TEM sample preparation and analysis of Drs. Mark Blackford and Robert Aughterson at the Australian Nuclear Science and Technology Organisation.

Funding sources

This work was supported by the New Zealand Ministry of Business, Innovation and Employment (C08X1206, C05X1404), and the Australian Institute of Nuclear Science and Engineering (AINGRA08036 and AINGRA12037).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Jérôme Leveneur.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leveneur, J., Williams, G.V.M., Mitchell, D.R.G. et al. Exchange bias and large room temperature magnetoresistance in ion beam-synthesized Co nanoparticles in SiO2. emergent mater. 2, 313–325 (2019). https://doi.org/10.1007/s42247-019-00034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00034-8

Keywords

Navigation