Abstract
Magnetic nanogranular materials have shown promising magnetic and electron transport properties, offering key advantages for a range of applications from spintronics components to magnetic field sensors. In this paper, the properties of Co nanoparticles synthesized using low-energy ion implantation and electron beam annealing (EBA) on SiO2 were investigated. EBA leads to the growth of crystalline face-centred cubic Co nanoparticles from small nanoparticles within a Co-rich region in the near surface. The as-implanted and EBA samples are ferromagnetic with Curie temperatures above 300 K. The saturated magnetic moment per implanted Co atom was measured to be as high as 4.25 ± 0.5 μB. The moment per Co atom decreases and approaches that of bulk Co with increased EBA time. This suggests that there may be a ferromagnetic Co1-xSixOy phase that has not been previously reported. An exchange bias is observed and proposed to arise from a thin antiferromagnetic CoO layer surrounding the Co nanoparticles. We find a room temperature magnetoresistance as high as 22.8% at 8 T with linear behaviour above ~ 3 T. The linear magnetoresistance is likely to be due to a geometric magnetoresistance that is observed in inhomogeneous nanomaterials containing metallic nanoparticles in a semiconducting matrix. Thus, EBA leads to Co nanoparticles that are expected to be electronically spin polarized but there is no evidence for spin-dependent tunnelling. These unique characteristics could provide the base for novel devices.
Similar content being viewed by others
Abbreviations
- EBA:
-
Electron beam annealing
- RBS:
-
Rutherford backscattering spectroscopy
- PIXE:
-
Particle-induced X-ray emission
- TEM:
-
Transmission electron microscope
- SQUID:
-
Superconducting quantum interference device
- MR:
-
Magnetoresistance
- SAED:
-
Selected area electron diffraction
- TM:
-
Transition metal
References
M. Pannetier, C. Fermon, G. Le Goff, J. Simola, E. Kerr, Femtotesla magnetic field measurement with magnetoresistive sensors. Science 304(5677), 1648–1650 (2004)
S.X. Zhang, R.D. McDonald, A. Shekhter, Z.X. Bi, Y. Li, Q.X. Jia, S.T. Picraux, Magneto-resistance up to 60 Tesla in topological insulator Bi2Te3 thin films. Appl. Phys. Lett. 101(20), 202403 (2012)
M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, et al., Large, non-saturating magnetoresistance in WTe2. Nature 514(7521), 205–208 (2014)
J. Hu, T.F. Rosenbaum, Classical and quantum routes to linear magnetoresistance. Nat. Mater. 7(9), 697–700 (2008)
A. Husmann, J.B. Betts, G.S. Boebinger, A. Migliori, T.F. Rosenbaum, M.L. Saboungi, Megagauss sensors. Nature 417(6887), 421–424 (2002)
Haji-Sheikh, M. J. Compass applications using giant magnetoresistance sensors (GMR). In Giant Magnetoresistance (GMR) Sensors, pp. 157–180. Springer: Berlin Heidelberg, 2013
L. Jogschies, D. Klaas, R. Kruppe, J. Rittinger, P. Taptimthong, A. Wienecke, L. Rissing, M.C. Wurz, Recent developments of magnetoresistive sensors for industrial applications. Sensors 15(11), 28665–28689 (2015)
C.K. Yang, C.S. Hwang, J.C. Jan, F.Y. Lin, C. Hwa Chang, M. Fee, M. Christian, Design, fabrication, and performance tests of a HTS superconducting dipole magnet. Appl. Supercond., IEEE Trans 22(3), 4000804–4000804 (2012)
M. Furuse, M. Okano, S. Fuchino, A. Uchida, J. Fujihira, S. Fujihira, T. Kadono, A. Fujimori, T. Koide, HTS vector magnet for magnetic circular dichroism measurement. Appl. Supercond., IEEE Trans 23(3), 4100704–4100704 (2013)
J. Lenz, S. Edelstein, Magnetic sensors and their applications. IEEE Sensors J. 6(3), 631–649 (2006)
S. Bedant, W. Kleemann, Superparamagnetism. J. Phys. D. Appl. Phys.52, 013001 (2009)
B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (John Wiley and Sons, New Jersey, 2009)
K. Ludwig, J. Hauch, R. Mattheis, K.U. Barholz, G. Reiger, Adapting GMR sensors for integrated devices. Sensors Actuators A 106, 15–18 (2003)
P. Ripka, Advances in fluxgate sensors. Sensors Actuators A 106, 8–14 (2003)
J. Leveneur, J. Kennedy, G.V.M. Williams, J. Metson, A. Markwitz, Large room temperature magnetoresistance in ion beam synthesized surface Fe nanoclusters on SiO2. Appl. Phys. Lett. 98, 053111 (2011)
F.J. Yue, S. Wang, L. Lin, F.M. Zhang, C.H. Li, J.L. Zuo, Y.W. Du, D. Wu, Large low field magnetoresistance in Fe3O4/molecule nanoparticles at room temperature. J. Phys. D. Appl. Phys. 44, 025001 (2011)
V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogués, Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)
R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. (200), 359 (1999)
U. Häfeli, W. Schütt, J. Teller, M. Zborowski, Scientific and Clinical Applications of Magnetic Materials (Plenum, New York, 1997)
Y.P. Zeng, Z.W. Liu, H.Y. Yu, Z.G. Zheng, D.C. Zeng, X.S. Gao, Large positive room temperature magnetoresistance in nanogranular FeCo–Si–N thin films. Mater. Lett. 110, 27–30 (2013)
J. Inoue, S. Maekawa, Theory of tunneling magnetoresistance in granular magnetic films. Phys. Rev. B 53, R11927–R11929 (1996)
J. Leveneur, D.F. Sanchez, J. Kennedy, P.L. Grande, G.V.M. Williams, J.B. Metson, B.C. Cowie, Iron-based bimagnetic core/shell nanostructures in SiO2: a TEM, MEIS, and energy-resolved XPS analysis. J. Nanopart. Res. 14, 1149 (2012)
J. Kennedy, J. Leveneur, Y. Takeda, G.V.M. Williams, S. Kupke, D.R.G. Mitchell, A. Markwitz, J.B. Metson, Evolution of the structure and magneto-optical properties of ion beam synthesized iron nanoclusters. J. Mater. Sci. 47, 1127–1134 (2012)
M.A.S. Boff, R. Hinrichs, B. Canto, F. Mesquita, D.L. Baptista, G.L.F. Fraga, L.G. Pereira, Turn on of new electronic paths in Fe-SiO2 granular thin film. Appl. Phys. Lett. 105(14), 143112 (2014)
M. Feygenson, X. Teng, S.E. Inderhees, Y. Yiu, W. Du, W. Han, J. Wen, et al., Low-energy magnetic excitations in Co/CoO core/shell nanoparticles. Phys. Rev. B 83, 174414 (2011)
S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, Exchange anisotropy in oxide passivated Co fine particles. J. Appl. Phys. 73, 6984 (1993)
A. Markwitz, J. Kennedy, Group-IV and V ion implantation into nanomaterials and elemental analysis on the nanometre scale. Int. J. Nanotechnol. 6, 369 (2009)
D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(181) (2012)
S. Ram, Allotropic phase transformations in HCP, FCC, and BCC metastable structures in Co-nanoparticles. Mater. Sci. Eng. 923, A304–A306 (2001)
T. Nishizawa, K. Ishida, The Co (cobalt) system. Bull. Alloy Phase Diagr. 4, 387–390 (1983)
E. Kondoh, R.A. Donaton, S. Jin, H. Bender, W. Vandervorst, K. Maex, Interaction between Co and SiO2. Appl. Surf. Sci.136, 87 (1998)
Z.L. Zhang, Z.G. Xiao, G.W. Tu, The observation of Co film oxidation on Si and SiO2 substrates. Thin Solid Films 286, 295–298 (1996)
W.D. Chen, Y.D. Cui, C.C. Hsu, J. Tao, Interaction of Co with Si and SiO2 during rapid thermal annealing. J. Appl. Phys. 69, 7612–7619 (1991)
C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, K. Maex, CoSi2 formation through SiO2. Thin Solid Films 386, 19–26 (2001)
Cullity, D.; Stock, S. R. Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Company Inc.: 1978
M.A. Zalich, V.V. Baranauskas, J.S. Riffle, M. Saunders, T.G. St. Pierre, Structural and magnetic properties of oxidatively stable cobalt nanoparticles encapsulated in graphite shells. Chem. Mater.18, 2648 (2006)
L. Chao, B. Zou, A.J. Rondinone, Z.J. Zhang, Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J. Am. Chem. Soc.122(26), 6263–6267 (2000)
V. Dupuis, J.P. Perez, J. Tuaillon, V. Paillard, P. Mélinon, A. Perez, B. Barbara, L. Thomas, S. Fayeulle, J.M. Gay, Magnetic properties of nanostructured thin films of transition metal obtained by low energy cluster beam deposition. J. Appl. Phys. 76(10), 6676–6678 (1994)
M. Jamet, W. Wernsdorfer, C. Thirion, D. Mailly, V. Dupuis, P. Mélinon, A. Pérez, Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86(20), 4676 (2001)
R. Aquino, J. Depeyrot, M.H. Sousa, F.A. Tourinho, E. Dubois, R. Perzynski, Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Phys. Rev. B 72, 184435 (2005)
R.M. Bozorth, Ferromagnetism (IEEE Press, New York, 1993)
I.M. Billas, A. Châtelain, W.A. de Heer, Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 265(5179), 1682 (1994)
R.C. O’Handley, Modern Magnetic Materials: principles and application (Wiley-Interscience, New York, 1999)
W. Jauch, M. Reehuis, H.J. Bleif, F. Kubanek, P. Pattison, Crystallographic symmetry and magnetic structure of CoO. Phys. Rev. B 64, 052102 (2001)
Y. Ikedo, J. Sugiyama, H. Nozaki, H. Itahara, J.H. Brewer, E.J. Ansaldo, G.D. Morris, Spatial inhomogeneity of magnetic moments in the cobalt oxide spinel Co3O4. Phys. Rev. B 75, 054424 (2007)
K. Ishida, T. Nishizawa, M.E. Schlesinger, The Co-Si (cobalt-silicon) system. J. Phase Equilib. 12, 578–586 (1991)
J. Nogués, I.K. Schuller, Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999)
J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J.S. Munoz, M.D. Baró, Exchange bias in nanostructures. Phys. Rep. 422, 65–117 (2005)
E. Menendez, J. Demeter, J. Van Eyken, P. Nawrocki, E. Jedryka, M. Wojcik, J. Francisco Lopez-Barbera, J. Nogués, A. Vantomme, K. Temst, Improving the magnetic properties of Co–CoO systems by designed oxygen implantation profiles. ACS Appl. Mater. Interfaces 5(10), 4320–4327 (2013)
R.P. van Gorkom, J. Caro, T.M. Klapwijk, S. Radelaar, Temperature and angular dependence of the anisotropic magnetoresistance in epitaxial Fe films. Phys. Rev. B 63, 134432 (2001)
H. Akinaga, Magnetoresistive switch effect in metal/semiconductor hybrid granular films: extremely huge magnetoresistance effect at room temperature. Semicond. Sci. Technol. 17, 322–326 (2002)
S.A. Sonin, T. Thio, D.R. Hines, J.J. Heremans, Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289, 1530 (2000)
M.H. Parish, P.B. Littlewood, Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005)
T.A. Komissarova, M.A. Shakhov, V.N. Jmerik, R.V. Parfeniev, P. Paturi, X. Wang, A. Yoshikawa, S.V. Ivanov, Large magnetoresistance effect in InN epilayers. Phys. Rev. B 82, 245204 (2010)
F. Xiu, Y. Wang, K. Wong, Y. Zhou, X. Kou, J. Zou, K.L. Wang, MnGe magnetic nanocolumns and nanowells. Nanotechnology 21, 255602 (2010)
H.G. Johnson, S.P. Bennett, R. Barua, L.H. Lewis, D. Heiman, Universal properties of linear magnetoresistance in strongly disordered MnAs-GaAs composite semiconductors. Phys. Rev. B 82, 085202 (2010)
H. Xu, J.X. Lu, Y. Xia, J. Yin, Z. Liu, Non-saturating linear magnetoresistance in phase separated amorphous Ag10Ge15Te75 films. Solid Sate Commun. 152, 1150–1154 (2012)
K. Mackay, M. Bonfim, D. Givord, A. Fontaine, 50 T pulsed magnetic fields in microcoils. J. Appl. Phys. 87(4), 1996–2002 (2000)
P. Lobotka, J. Dérer, I. Vávra, C. de Julián Fernández, G. Mattei, P. Mazzoldi, Single-electron transport and magnetic properties of Fe− Si O 2 nanocomposites prepared by ion implantation. Phys. Rev. B 75(2), 024423 (2007)
G.L. Zhang, W.H. Liu, F. Xu, W.X. Hu, Preparation of Fe nanocrystalline in SiO2 by ion implantation. Appl. Phys. Lett. 61(21), 2527–2529 (1992)
Van Cuong, G., Anh Tuan, N., Tuan Anh, N., Van Tuong, D., Anh Tue, N., Tuyet Nga, N. and Phuong Lien, D., 2015. Structural characteristics and magnetic properties of Al2O3 matrix-based Co-cermet nanogranular films. Journal of Materials, 2015
O. Chayka, L. Kraus, P. Lobotka, V. Sechovsky, T. Kocourek, M. Jelinek, High field magnetoresistance in Co–Al–O nanogranular films. J. Magn. Magn. Mater. 300(2), 293–299 (2006)
T. Zhu, Y.J. Wang, H.W. Zhao, J.G. Zhao, W.S. Zhan, Tunneling magnetoresistance and magnetic properties of Fe-Al2O3nanogranular films. J. Appl. Phys. 89(11), 6877–6879 (2001)
B.J. Hattink, M.G. del Muro, Z. Konstantinović, X. Batlle, A. Labarta, M. Varela, Tunneling magnetoresistance in Co− ZrO 2 granular thin films. Phys. Rev. B 73(4), 045418 (2006)
J. Kennedy, J. Leveneur, J. Metson, G.V.M. Williams, S. Rubanov, A. Markiwtz, Structural and chemical changes during the ion beam synthesis of Fe nanoclusters in Silicon nitride. Conference: International Conferance on Advanced MaterialsAt (Loyola College, Chennai, India, 2012)
Yildirim, O., Cornelius, S., Smekhova, A., Zykov, G., Gan'shina, E.A., Granovsky, A.B., Hübner, R., Bähtz, C. and Potzger, K., 2015. The local environment of cobalt in amorphous, polycrystalline and epitaxial anatase TiO2: Co films produced by cobalt ion implantation. Journal of Applied Physics, 117(18), p.183901
S. Ahmed, X. Ding, P.P. Murmu, N.N. Bao, R. Liu, J. Kennedy, J. Ding, J.B. Yi, Magnetic properties of Co doped WSe2 by implantation. J. Alloys Compd. 731, 25–31 (2018)
M. Molamohammadi, C. Luna, A. Arman, S. Solaymani, A. Boochani, A. Ahmadpourian, A. Shafiekhani, Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J. Mater. Sci. Mater. Electron. 26(9), 6814–6818 (2015)
K. Liu, L. Zhao, P. Klavins, F.E. Osterloh, H. Hiramatsu, Extrinsic magnetoresistance in magnetite nanoparticles. J. Appl. Phys. 93(10), 7951–7953 (2003)
Acknowledgements
We acknowledge the assistance in TEM sample preparation and analysis of Drs. Mark Blackford and Robert Aughterson at the Australian Nuclear Science and Technology Organisation.
Funding sources
This work was supported by the New Zealand Ministry of Business, Innovation and Employment (C08X1206, C05X1404), and the Australian Institute of Nuclear Science and Engineering (AINGRA08036 and AINGRA12037).
Author information
Authors and Affiliations
Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Electronic supplementary material
ESM 1
(PDF 338 kb)
Rights and permissions
About this article
Cite this article
Leveneur, J., Williams, G.V.M., Mitchell, D.R.G. et al. Exchange bias and large room temperature magnetoresistance in ion beam-synthesized Co nanoparticles in SiO2. emergent mater. 2, 313–325 (2019). https://doi.org/10.1007/s42247-019-00034-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42247-019-00034-8