Abstract
We report, an aqueous pod extract of Dolichos lablab L. mediated synthesis of magnetite nanoparticles (Fe3O4 NPs) for an efficient adsorption of organic dye pollutant from contaminated water. The Fe3O4 NPs were capped and stabilized with phytoconstituents of D. lablab L. The product Fe3O4 NPs was characterized by range of instrumental facilities such as Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, FT-Raman spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive X-ray spectroscopy, Transmission electron microscopy, vibrating sample magnetometer, and thermogravimetric analysis. The synthesized 12.5 nm spherical shaped Fe3O4 NPs were used as adsorbent for elimination of crystal violet (CV) from contaminated water. It is found that the dye removal efficiency of Fe3O4 NPs was critically depends on pH of the reaction medium and dosage of Fe3O4 NPs. Adsorption data were analyzed using Langmuir, Freundlich, and Temkin isotherms as well as pseudo-first-order and pseudo-second-order kinetic models. The overall outcome of adsorption best fitted to Langmuir and psepseudo-second-order with their corresponding correlation coefficients of (R2 = 0.996) and (R2 = 0.977), respectively The biomolecules capped can act as a valuable adsorbent for removal of pollutant organic dyes from industrial outflow.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
B.D. Terris, T. Thomson, J. Phys. D Appl. Phys. 38, R199–R222 (2005)
K. Sun, C. Sun, S. Tang, CrystEngComm 18, 641 (2016)
M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, O.R.T. Thomas, Appl. Microbiol. Biotechnol. 70, 505–516 (2006)
B.H. Kim, N. Lee, H. Kim, K. An, Y.I. Park, Y. Choi, K. Shin, Y. Lee, S.G. Kwon, H.B. Na, J.-G. Park, T.-Y. Ahn, Y.-W. Kim, W.K. Moon, S.H. Choi, T. Hyeon, J. Am. Chem. Soc. 133, 12624 (2011)
R. Qiao, C. Yang, M. Gao, J. Mater. Chem. 19, 6274 (2009)
U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu, Q. Wang, Nanoscale 7, 4291 (2015)
M.T. López-López, J.D.G. Durán, A.V. Delgado, F. González-Caballero, J. Colloid Interface Sci. 291, 144 (2005)
A.L. Kavitha, H. Gurumallesh Prabu, S. Ananda Babu, S.K. Suja, J. Nanosci. Nanotechnol. 13, 98–104 (2013)
Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh and J. Cheon, J. Am. Chem. Soc. 127, 5732 (2005)
S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)
M.M. Miller, G.A. Prinz, S.-F. Cheng, S. Bounnak, Appl. Phys. Lett. 81, 2211–2213 (2002)
N. Basavegowda, K. B. S. Magar, K. Mishra, Y. R. Lee, New J. Chem. 38, 5415 (2014)
I. Ali, C. Peng, I. Naz, Z.M. Khan, M. Sultan, T. Islam, I.A. Abbasi, RSC Adv. 7, 40158 (2017)
W. Rongcheng, Q. Jiuhui, Water Environ. Res. 76, 2637 (2004)
S. Gao, Y. Shi, S. Zhang, K. Jiang, S. Yang, Z. Li, E. Takayama-Muromachi, J. Phys. Chem. C 112, 10398 (2008)
W. Zhang, F. Shen, R. Hong, Particuology 9, 179 (2011)
K. Nakatsuka, B. Jeyadevan, S. Neveu, H. Koganezawa, J. Magn. Magn. Mater. 252, 360–362 (2002)
B.M. Kumfer, K. Shinoda, B. Jeyadevan, I.M. Kennedy, J. Aerosol Sci. 41, 257 (2010)
O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Superlattices Microst. 52, 793 (2012)
F. Fajaroh, H. Setyawan, W. Widiyastuti, S. Winardi, Adv. Powder Technol. 23, 273 (2012)
J.F. de Carvalho, S.N. de Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Appl. Surf. Sci. 275, 84–87 (2013)
R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken, Mater. Sci. Eng. A 286, 101 (2000)
Y. Hou, H. Kondoh, M. Shimojo, T. Kogure, T. Ohta, J. Phys. Chem. B 109, 19094 (2005)
K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Fuel Process. Technol. 86, 33 (2004)
P. Jian, H. Yahui, W. Yang, L. Linlin, J. Memb. Sci. 284, 9–16 (2006)
K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Nanomedicine 6, 257 (2010)
M. Mahdavi, F. Namvar, M. Ahmad, R. Mohamad, Molecules 18, 5954 (2013)
P. Mohanpuria, N.K. Rana, S.K. Yadav, J. Nanopart. Res. 10, 507 (2007)
Abhilash, K. Revati and B. D. Pandey, Bull. Mater. Sci. 34, 191 (2011)
W. Jiang, K. Lai, K. Liu, R. Xia, F. Gao, Y. Wu, Z. Gu, Nanoscale 6, 1305 (2014)
A. Kumar Das, A.K. Das, A. Marwal, R. Verma, Nano Hybrids 7, 69 (2014)
A. M. Awwad and N. M. Salem, Nanosci. Nanotechnol. Lett. 2, 125 (2013)
Y. Cai, Y. Shen, A. Xie, S. Li, X. Wang, J. Magn. Magn. Mater. 322, 2938–2943 (2010)
S.P. Rajendran, K. Sengodan, J. Nanosci. Nanotechnol., 2017 (2017)
V. C. Karade, P. P. Waifalkar, T. D. Dongle, Subasa C. Sahoo, P. Kollu, P. S. Patil, P. B. Patil, Mater. Res. Express 4, 096102 (2017)
A.L. Ramirez-Nuñez, L.F. Jimenez-Garcia, G.F. Goya, B. Sanz, J. Santoyo-Salazar, Nanotechnology 29, 074001 (2018)
V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyana, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Langmuir 30, 5982 (2014)
E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Langmuir 27, 264 (2011)
S.F. Hasany, S.F. Hasany, I. Ahmed, J. Rajan, A. Rehman, Nanosci. Nanotechnol. Lett. 2, 148 (2013)
A.A. Fernandes, G. Nagendrappa, J. Agric. Food Chem. 27, 795 (1979)
N. Belachew, D. Rama Devi, K. Basavaiah, J. Exp. Nanosci. 12, 114–128 (2017)
R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, M.B. Gawande, Green Chem. 18, 3184 (2016)
A.M. Atta, G.A. El-Mahdy, H.A. Al-Lohedan, S.A. Al-Hussain, Int. J. Mol. Sci. 15, 6974–6989 (2014)
F. Buazar, M.H. Baghlani-Nejazd, M. Badri, M. Kashisaz, A. Khaledi-Nasab, F. Kroushawi, Starch-Stärke 68, 796 (2016)
R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. (Wiley, 2006)
Z. Wang, M. Lu, RSC Adv. 1234 (2014)
F. Ador, Spectroscopy 31, 22–27 (2016)
L. Ying-Sing, J.S. Church, A.L. Woodhead, J. Magn. Magn. Mater. 324, 1546 (2012)
Z. Eren, F.N. Acar, Desalination 194, 1 (2006)
M. A. M. Salleh, D. K. Mahmoud, W. A. W. Abdul Karim, A. Idris. Desalination 280, 1 (2011)
A. Ofomaja, Y. Ho, Dyes Pigments 74, 60 (2007)
Y.C. Sharma, A.S.K.S. Uma, S.N. Upadhyay, J. Chem. Eng. Data 55, 5777 (2010)
I. Langmuir, J. Franklin Inst. 183, 102 (1917)
H. Freundlich, Z. Phys. Chem. 57, 385. https://doi.org/10.1515/zpch-1907-5723
N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, J. Colloid Interface Sci. 362, 457 (2011)
M.I. Tempkin, V. Pyzhev, Acta Phys 12, 327 (1940)
M. Hayasi, M. Karimi, Polym. Bull. 74, 1995–2016 (2016)
S. Y. Lagergren, Zur Theorie der sogenannten Adsorption gelöster Stoffe, 24, 1–39 (1898)
D. Robati, J Nanostruct Chem 3, 55 (2013)
Acknowledgements
Authors would like to thank UGC-SAP-DRS-I (No.F.540/18/DRS-I/2016)), Department of Inorganic and Analytical chemistry, Andhra University and DST-FIST (5R/FIST/CSI-241/2012(C)), Department of Inorganic and Analytical Chemistry, Andhra University for financial support. Mebrahtu Hagos Kahsay and Aschalew Tadesse would like to acknowledge Ministry of Education, Federal Democratic Republic of Ethiopia for providing Ph.D. Fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
ESM 1
(DOCX 1.46 mb)
Rights and permissions
About this article
Cite this article
Basavaiah, K., Kahsay, M.H. & RamaDevi, D. Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet. emergent mater. 1, 121–132 (2018). https://doi.org/10.1007/s42247-018-0005-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s42247-018-0005-1