Skip to main content
Log in

Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

We report, an aqueous pod extract of Dolichos lablab L. mediated synthesis of magnetite nanoparticles (Fe3O4 NPs) for an efficient adsorption of organic dye pollutant from contaminated water. The Fe3O4 NPs were capped and stabilized with phytoconstituents of D. lablab L. The product Fe3O4 NPs was characterized by range of instrumental facilities such as Ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, FT-Raman spectroscopy, X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive X-ray spectroscopy, Transmission electron microscopy, vibrating sample magnetometer, and thermogravimetric analysis. The synthesized 12.5 nm spherical shaped Fe3O4 NPs were used as adsorbent for elimination of crystal violet (CV) from contaminated water. It is found that the dye removal efficiency of Fe3O4 NPs was critically depends on pH of the reaction medium and dosage of Fe3O4 NPs. Adsorption data were analyzed using Langmuir, Freundlich, and Temkin isotherms as well as pseudo-first-order and pseudo-second-order kinetic models. The overall outcome of adsorption best fitted to Langmuir and psepseudo-second-order with their corresponding correlation coefficients of (R2 = 0.996) and (R2 = 0.977), respectively The biomolecules capped can act as a valuable adsorbent for removal of pollutant organic dyes from industrial outflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. B.D. Terris, T. Thomson, J. Phys. D Appl. Phys. 38, R199–R222 (2005)

  2. K. Sun, C. Sun, S. Tang, CrystEngComm 18, 641 (2016)

    Article  Google Scholar 

  3. M. Franzreb, M. Siemann-Herzberg, T.J. Hobley, O.R.T. Thomas, Appl. Microbiol. Biotechnol. 70, 505–516 (2006)

    Article  CAS  Google Scholar 

  4. B.H. Kim, N. Lee, H. Kim, K. An, Y.I. Park, Y. Choi, K. Shin, Y. Lee, S.G. Kwon, H.B. Na, J.-G. Park, T.-Y. Ahn, Y.-W. Kim, W.K. Moon, S.H. Choi, T. Hyeon, J. Am. Chem. Soc. 133, 12624 (2011)

    Article  CAS  Google Scholar 

  5. R. Qiao, C. Yang, M. Gao, J. Mater. Chem. 19, 6274 (2009)

    Article  CAS  Google Scholar 

  6. U. Ikoba, H. Peng, H. Li, C. Miller, C. Yu, Q. Wang, Nanoscale 7, 4291 (2015)

    Article  CAS  Google Scholar 

  7. M.T. López-López, J.D.G. Durán, A.V. Delgado, F. González-Caballero, J. Colloid Interface Sci. 291, 144 (2005)

    Article  Google Scholar 

  8. A.L. Kavitha, H. Gurumallesh Prabu, S. Ananda Babu, S.K. Suja, J. Nanosci. Nanotechnol. 13, 98–104 (2013)

    Article  CAS  Google Scholar 

  9. Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, S. Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh and J. Cheon, J. Am. Chem. Soc. 127, 5732 (2005)

    Article  CAS  Google Scholar 

  10. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)

    Article  CAS  Google Scholar 

  11. M.M. Miller, G.A. Prinz, S.-F. Cheng, S. Bounnak, Appl. Phys. Lett. 81, 2211–2213 (2002)

    Article  CAS  Google Scholar 

  12. N. Basavegowda, K. B. S. Magar, K. Mishra, Y. R. Lee, New J. Chem. 38, 5415 (2014)

  13. I. Ali, C. Peng, I. Naz, Z.M. Khan, M. Sultan, T. Islam, I.A. Abbasi, RSC Adv. 7, 40158 (2017)

    Article  CAS  Google Scholar 

  14. W. Rongcheng, Q. Jiuhui, Water Environ. Res. 76, 2637 (2004)

    Article  Google Scholar 

  15. S. Gao, Y. Shi, S. Zhang, K. Jiang, S. Yang, Z. Li, E. Takayama-Muromachi, J. Phys. Chem. C 112, 10398 (2008)

    Article  CAS  Google Scholar 

  16. W. Zhang, F. Shen, R. Hong, Particuology 9, 179 (2011)

    Article  CAS  Google Scholar 

  17. K. Nakatsuka, B. Jeyadevan, S. Neveu, H. Koganezawa, J. Magn. Magn. Mater. 252, 360–362 (2002)

    Article  CAS  Google Scholar 

  18. B.M. Kumfer, K. Shinoda, B. Jeyadevan, I.M. Kennedy, J. Aerosol Sci. 41, 257 (2010)

    Article  CAS  Google Scholar 

  19. O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Superlattices Microst. 52, 793 (2012)

    Article  CAS  Google Scholar 

  20. F. Fajaroh, H. Setyawan, W. Widiyastuti, S. Winardi, Adv. Powder Technol. 23, 273 (2012)

  21. J.F. de Carvalho, S.N. de Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Appl. Surf. Sci. 275, 84–87 (2013)

    Article  Google Scholar 

  22. R. Vijayakumar, Y. Koltypin, I. Felner, A. Gedanken, Mater. Sci. Eng. A 286, 101 (2000)

    Article  Google Scholar 

  23. Y. Hou, H. Kondoh, M. Shimojo, T. Kogure, T. Ohta, J. Phys. Chem. B 109, 19094 (2005)

    Article  CAS  Google Scholar 

  24. K. Mondal, H. Lorethova, E. Hippo, T. Wiltowski, S.B. Lalvani, Fuel Process. Technol. 86, 33 (2004)

    Article  CAS  Google Scholar 

  25. P. Jian, H. Yahui, W. Yang, L. Linlin, J. Memb. Sci. 284, 9–16 (2006)

    Article  CAS  Google Scholar 

  26. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Nanomedicine 6, 257 (2010)

    Article  CAS  Google Scholar 

  27. M. Mahdavi, F. Namvar, M. Ahmad, R. Mohamad, Molecules 18, 5954 (2013)

    Article  Google Scholar 

  28. P. Mohanpuria, N.K. Rana, S.K. Yadav, J. Nanopart. Res. 10, 507 (2007)

    Article  Google Scholar 

  29. Abhilash, K. Revati and B. D. Pandey, Bull. Mater. Sci. 34, 191 (2011)

  30. W. Jiang, K. Lai, K. Liu, R. Xia, F. Gao, Y. Wu, Z. Gu, Nanoscale 6, 1305 (2014)

    Article  CAS  Google Scholar 

  31. A. Kumar Das, A.K. Das, A. Marwal, R. Verma, Nano Hybrids 7, 69 (2014)

    Article  Google Scholar 

  32. A. M. Awwad and N. M. Salem, Nanosci. Nanotechnol. Lett. 2, 125 (2013)

  33. Y. Cai, Y. Shen, A. Xie, S. Li, X. Wang, J. Magn. Magn. Mater. 322, 2938–2943 (2010)

    Article  CAS  Google Scholar 

  34. S.P. Rajendran, K. Sengodan, J. Nanosci. Nanotechnol., 2017 (2017)

  35. V. C. Karade, P. P. Waifalkar, T. D. Dongle, Subasa C. Sahoo, P. Kollu, P. S. Patil, P. B. Patil, Mater. Res. Express 4, 096102 (2017)

  36. A.L. Ramirez-Nuñez, L.F. Jimenez-Garcia, G.F. Goya, B. Sanz, J. Santoyo-Salazar, Nanotechnology 29, 074001 (2018)

    Article  Google Scholar 

  37. V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyana, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Langmuir 30, 5982 (2014)

    Article  CAS  Google Scholar 

  38. E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H.M. Galindo, J.B. Collins, G.E. Hoag, S.L. Suib, Langmuir 27, 264 (2011)

    Article  CAS  Google Scholar 

  39. S.F. Hasany, S.F. Hasany, I. Ahmed, J. Rajan, A. Rehman, Nanosci. Nanotechnol. Lett. 2, 148 (2013)

    Article  Google Scholar 

  40. A.A. Fernandes, G. Nagendrappa, J. Agric. Food Chem. 27, 795 (1979)

    Article  CAS  Google Scholar 

  41. N. Belachew, D. Rama Devi, K. Basavaiah, J. Exp. Nanosci. 12, 114–128 (2017)

    Article  CAS  Google Scholar 

  42. R.K. Sharma, S. Dutta, S. Sharma, R. Zboril, R.S. Varma, M.B. Gawande, Green Chem. 18, 3184 (2016)

    Article  CAS  Google Scholar 

  43. A.M. Atta, G.A. El-Mahdy, H.A. Al-Lohedan, S.A. Al-Hussain, Int. J. Mol. Sci. 15, 6974–6989 (2014)

    Article  Google Scholar 

  44. F. Buazar, M.H. Baghlani-Nejazd, M. Badri, M. Kashisaz, A. Khaledi-Nasab, F. Kroushawi, Starch-Stärke 68, 796 (2016)

    Article  CAS  Google Scholar 

  45. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. (Wiley, 2006)

  46. Z. Wang, M. Lu, RSC Adv. 1234 (2014)

  47. F. Ador, Spectroscopy 31, 22–27 (2016)

  48. L. Ying-Sing, J.S. Church, A.L. Woodhead, J. Magn. Magn. Mater. 324, 1546 (2012)

    Google Scholar 

  49. Z. Eren, F.N. Acar, Desalination 194, 1 (2006)

    Article  CAS  Google Scholar 

  50. M. A. M. Salleh, D. K. Mahmoud, W. A. W. Abdul Karim, A. Idris. Desalination 280, 1 (2011)

    Article  CAS  Google Scholar 

  51. A. Ofomaja, Y. Ho, Dyes Pigments 74, 60 (2007)

    Article  CAS  Google Scholar 

  52. Y.C. Sharma, A.S.K.S. Uma, S.N. Upadhyay, J. Chem. Eng. Data 55, 5777 (2010)

    Article  Google Scholar 

  53. I. Langmuir, J. Franklin Inst. 183, 102 (1917)

  54. H. Freundlich, Z. Phys. Chem. 57, 385. https://doi.org/10.1515/zpch-1907-5723

  55. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, J. Colloid Interface Sci. 362, 457 (2011)

    Article  CAS  Google Scholar 

  56. M.I. Tempkin, V. Pyzhev, Acta Phys 12, 327 (1940)

    Google Scholar 

  57. M. Hayasi, M. Karimi, Polym. Bull. 74, 1995–2016 (2016)

  58. S. Y. Lagergren, Zur Theorie der sogenannten Adsorption gelöster Stoffe, 24, 1–39 (1898)

  59. D. Robati, J Nanostruct Chem 3, 55 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank UGC-SAP-DRS-I (No.F.540/18/DRS-I/2016)), Department of Inorganic and Analytical chemistry, Andhra University and DST-FIST (5R/FIST/CSI-241/2012(C)), Department of Inorganic and Analytical Chemistry, Andhra University for financial support. Mebrahtu Hagos Kahsay and Aschalew Tadesse would like to acknowledge Ministry of Education, Federal Democratic Republic of Ethiopia for providing Ph.D. Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Basavaiah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1.46 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basavaiah, K., Kahsay, M.H. & RamaDevi, D. Green synthesis of magnetite nanoparticles using aqueous pod extract of Dolichos lablab L for an efficient adsorption of crystal violet. emergent mater. 1, 121–132 (2018). https://doi.org/10.1007/s42247-018-0005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-018-0005-1

Keywords

Navigation