Skip to main content
Log in

Optimization of reheating furnace rolling delay strategies based on a minimum energy consumption principle

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

To provide an energy-efficient and slab-demand-compliant rolling delay strategy, the simulation software is utilized to calculate the rolling delay process of the reheating furnace. Based on energy consumption evaluation, two optimization methods were employed. The bisection approach uses the needs of the slab to estimate the rolling delay temperature, and the golden section search method uses the energy consumption analysis of the slab to determine the high-temperature insulation duration. Generally, the slab closest to the discharge position in the control zone is selected as the optimization target. The optimized slab does not show a significant temperature rise after the end of the rolling delay process. When comparing the optimized rolling delay strategies with the traditional ones, the optimized rolling delay strategies not only meet the output requirements for slabs but also offer significant advantages in terms of energy efficiency, and this advantage increases with rolling delay time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zhao, L. Ma, M.E. Zayed, A.H. Elsheikh, W. Li, Q. Yan, J. Wang, Process. Saf. Environ. Prot. 147 (2021) 1209–1228.

    Article  Google Scholar 

  2. W.J. Zhang, H.G. Chen, Z.K. Yang, Metall. Energy Source 16 (1997) No. 6, 52–56.

    Google Scholar 

  3. Y.W. Chen, Q.G. Meng, T.Y. Chai, J. Steel Research 17 (2005) No. 6, 34–38.

    Google Scholar 

  4. F. Holland, L. Huisman, Iron and Steel Engineer 49 (1972) No. 9, 43–56.

    Google Scholar 

  5. F. Hollander, S. Zuurbier, Iron and Steel Engineer 59 (1982) No. 11, 44–52.

    Google Scholar 

  6. G.J. Li, X.T. Liu, H.G. Chen, Journal of Northeastern University (Natural Science) 32 (2011) 818.

    Google Scholar 

  7. X.J. Wen, G.J. Li, B. Liu, Industrial Furnace 36 (2014) No. 2, 28–31.

    Google Scholar 

  8. Y. Chen, H.G. Chen, Pangang Technology 33 (1998) No. 5, 44–47.

    Google Scholar 

  9. B.L. Ning, Metallurgical Energy 8 (1989) No. 5, 37–40.

    Google Scholar 

  10. C.Q. Zhu, Intelligent optimization control of heating process of heating furnace, Liaoning University of Science and Technology, Shenyang, Liaoning, 2012.

    MATH  Google Scholar 

  11. Y.W. Chen, Q.G. Meng, T.Y. Chai, Journal of Iron and Steel Research 27 (2005) No. 6, 34–38.

    Google Scholar 

  12. Y.J. Yang, Z.Y. Jiang, X.X. Zhang, W.L. Chen, Metallurgical Automation 36 (2012) 19–24.

    Google Scholar 

  13. D.B. Zhang, J.X. Feng, X.Y. Xie, Industrial Heating 38 (2009) No. 3, 32–36.

    Google Scholar 

  14. S.C. Zhang, J.X. Feng, J.F. Ji, Shandong Metallurgy 36 (2014) No. 5, 1–4.

    Google Scholar 

  15. Z. Xu, J. Zhao, K. Sun, S. Niu, Y. Lu, L. Yuan, T. Liu, in: 2020 3rd International Conference on Mechatronics, Robotics and Automation (ICMRA), IEEE, Shanghai, China, 2020, pp. 34–38.

  16. Z. Xu, T. Hua, X. Fan, X. Zhu, in: 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), IEEE, Xi’an, China, 2022, pp. 347–352.

  17. T. Leden, in: International Conference Scanheating, MEFOS Metal Working Research Plant, Luleå, Sweden, 1985.

  18. A.G. Ahmad, N.M.C. Abuja, Int. J. Math. Trends Technol. 19 (2015) 121–129.

    Article  Google Scholar 

  19. J.C. Butcher, Numerical methods for ordinary differential equations, 3rd ed., Wiley, Chichester, UK, 2016.

    Book  MATH  Google Scholar 

  20. Q. Xia, Y. Ren, Z. Wang, Energy 264 (2023) 126228.

    Article  Google Scholar 

  21. C. Mineo, D. Lines, D. Cerniglia, Ultrasonics 111 (2021) 106330.

    Article  Google Scholar 

  22. J.A. Koupaei, S.M.M. Hosseini, F.M.M. Ghaini, Eng. Appl. Artif. Intell. 50 (2016) 201–214.

    Article  Google Scholar 

  23. C.K. Chang, S.H. Lee, R.N. Wu, J. Eng. 2021 (2021) 399–407.

    Google Scholar 

  24. A.N. Elghandour, A.M. Salah, Y.A. Elmasry, IEEE Access 9 (2021) 43411–43421.

    Article  Google Scholar 

  25. B. Zhu, K. Chi, J. Liu, IEEE Transactions on Communications 70 (2022) 3186–3203.

    Article  Google Scholar 

  26. L. Ge, H. Xu, Z. Guo, IEEE Transactions on Power Electronics 36 (2021) 13285–13292.

    Article  Google Scholar 

  27. M.A. Bagherian, K. Mehranzamir, A.B. Pour, Processes 9 (2021) 339.

    Article  Google Scholar 

  28. W. Dong, H.G. Chen, Iron and Steel 39 (2004) No. 1, 55–58.

    Article  Google Scholar 

  29. P. Cao, R.M. Zhang, H.G. Chen, Journal of Materials and Metallurgy 7 (2008) No. 6, 229–232.

    Google Scholar 

  30. Z. Huang, N. Wang, T. Ma, in: 2023 9th International Conference on Control Science and Systems Engineering (ICCSSE), IEEE, Shenzhen, China, 2023, pp. 92–97.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-xiao Feng.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work. The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Jq., Feng, Jx., Huang, Xm. et al. Optimization of reheating furnace rolling delay strategies based on a minimum energy consumption principle. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01227-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01227-0

Keywords

Navigation