Skip to main content
Log in

Magnesium-containing pellet regulating blast furnace ferrous burden interaction: softening–melting behavior and mechanism

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

MgO participates in all stages of sintering, pelletizing, and blast furnace ironmaking, and synergistically optimizing the distribution of MgO in ferrous burden can effectively enhance the interaction within the ferrous burdens and optimize the softening–melting properties of the mixed burden. Magnesium-containing pellets mixed with low-MgO sinter or mixed with high-MgO sinter in the blast furnace ferrous burden structure have opposite softening–melting performance laws. When the structure of the ferrous burden is magnesium-containing pellets mixed with low-MgO sinter, the magnesium-containing pellets can enhance the interaction of the ferrous burden in the process of softening–melting, which can optimize the composition of the slag phase and improve the slag liquidity. When the structure of the ferrous burden is magnesium-containing pellets mixed with high-MgO sinter, the magnesium-containing pellets weaken the interaction of the ferrous burden in the process of softening–melting, increase the content of the high melting point solid-phase particles in the slag, lead to an increase in the viscosity of the slag and difficult separation of the slag and iron, and decrease the permeability of the charge layer. Therefore, to ensure good permeability of the mixed burden, the following measures are suggested: optimizing the MgO distribution of the ferrous burden, reducing the MgO content of the sinter to 1.96 wt.%, increasing the MgO content of the pellets to 1.03–1.30 wt.%, controlling the MgO/Al2O3 ratio of the mixed burden within 1.15–1.32, narrowing the position of the cohesive zone, and maintaining an S value (permeability index) of approximately 150 kPa °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.B. Zhang, X.J. Chen, Z.J. Su, S. Liu, F. Chen, N.Y. Wu, T. Jiang, J. Iron Steel Res. Int. 29 (2021) 1381–1392.

    Article  Google Scholar 

  2. M. Naito, K. Takeda, Y. Matsui, ISIJ Int. 55 (2015) 7–35.

    Article  Google Scholar 

  3. Y. Matsui, A. Sato, T. Oyama, T. Matsuo, S. Kitayama, R. Ono, ISIJ Int. 43 (2003) 166–174.

    Article  Google Scholar 

  4. J.R. Kim, Y.S. Lee, D.J. Min, S.M. Jung, S.H. Yi, ISIJ Int. 44 (2004) 1291–1297.

    Article  Google Scholar 

  5. T. Li, C. Sun, X. Liu, S. Song, Q. Wang, Ironmak. Steelmak. 45 (2018) 755–763.

    Article  Google Scholar 

  6. A. Kemppainen, K.I. Ohno, M. Iljana, O. Mattila, T. Paananen, E.P. Heikkinen, T. Maeda, K. Kunitomo, T. Fabritius, ISIJ Int. 55 (2015) 2039–2046.

    Article  Google Scholar 

  7. F.R. Silva, L.R. Lemos, P. de Freitas Nogueira, M. Bressan, Metall. Mater. Trans. B 52 (2021) 69–76.

    Article  Google Scholar 

  8. G.L. Wang, J. Kang, J.L. Zhang, Y.Z. Wang, Z.Y. Wang, Z.J. Liu, C.Y. Xu, Int. J. Miner. Metall. Mater. 28 (2021) 621–628.

    Article  Google Scholar 

  9. X. Jiang, H.Y. Zhang, H.Y. Zheng, Q.J. Gao, F.M. Shen, J. Iron Steel Res. Int. 27 (2020) 624–630.

    Article  Google Scholar 

  10. S. Sridhar, D. Sichen, S. Seetharaman, K.C. Mills, Steel Res. 72 (2001) 3–10.

    Article  Google Scholar 

  11. K. Bai, Y. Pan, J. Wang, H. Zuo, Q. Xue, Metall. Res. Technol. 118 (2021) 318.

    Article  Google Scholar 

  12. J.S. Shiau, S.H. Liu, C.K. Ho, Mater. Trans. 53 (2012) 1449–1455.

    Article  Google Scholar 

  13. S. Ueda, T. Kon, T. Miki, S.J. Kim, H. Nogami, Metall. Mater. Trans. B 47 (2016) 2371–2377.

    Article  Google Scholar 

  14. X. Fan, J. Zhang, K. Jiao, J. Zhang, H. Ma, S. Gao, R. Wang, Ironmak. Steelmak. 49 (2022) 626–633.

    Article  Google Scholar 

  15. L. Ma, J. Zhang, Y. Wang, M. Lu, Q. Cai, C. Xu, Z. Li, Z. Liu, Powder Technol. 412 (2022) 117979.

    Article  Google Scholar 

  16. M. Iljana, A. Kemppainen, T. Paananen, O. Mattila, E.P. Heikkinen, T. Fabritius, ISIJ Int. 56 (2016) 1705–1714.

    Article  Google Scholar 

  17. H. Guo, F.M. Shen, X. Jiang, Q.J. Gao, G.G. Ding, J. Cent. South Univ. 26 (2019) 3238–3251.

    Article  Google Scholar 

  18. Q. Gao, X. Jiang, H. Zheng, F. Shen, Minerals 8 (2018) 389.

    Article  Google Scholar 

  19. S. Dwarapudi, T.K. Ghosh, V. Tathavadkar, M.B. Denys, D. Bhattacharjee, R. Venugopal, Int. J. Miner. Process. 112–113 (2012) 55–62.

    Article  Google Scholar 

  20. D. Zhu, T. Chun, J. Pan, J. Zhang, Int. J. Miner. Process. 125 (2013) 51–60.

    Article  Google Scholar 

  21. S.C. Panigrahy, P. Verstraeten, J. Dilewijns, Metall. Trans. B 15 (1984) 23–32.

    Article  Google Scholar 

  22. F. Shen, X. Jiang, G. Wu, G. Wei, X. Li, Y. Shen, ISIJ Int. 46 (2006) 65–69.

    Article  Google Scholar 

  23. K. Higuchi, T. Nishimura, T. Shioda, M. Pettersson, P. Sikström, ISIJ Int. 60 (2020) 2392–2399.

    Article  Google Scholar 

  24. P.F. Nogueira, R.J. Fruehan, Metall. Mater. Trans. B 37 (2006) 551–558.

    Article  Google Scholar 

  25. D.J. Gavel, A. Adema, J. van der Stel, T. Peeters, J. Sietsma, R. Boom, Y. Yang, Ironmak. Steelmak. 48 (2021) 359–369.

    Article  Google Scholar 

  26. H. Kim, W.H. Kim, I. Sohn, D.J. Min, Steel Res. Int. 81 (2010)261–264.

    Article  Google Scholar 

  27. M. Chen, D. Zhang, M. Kou, B. Zhao, ISIJ Int. 54 (2014) 2025–-2030.

    Article  Google Scholar 

  28. M. Hayashi, K. Suzuki, Y. Maeda, T. Watanabe, ISIJ Int. 56 (2016) 220–225.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (52174291), the National Natural Science Foundation of China Youth Fund (52204335), and the Beijing New-Star of Science and Technology (Z211100002121115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao-zu Wang or Zheng-jian Liu.

Ethics declarations

Conflict of interest

Yao-zu Wang and Zheng-jian Liu are youth editorial board member for the Journal of Iton and Steel Research International and were not involved in the editorial review or the decision to publish this article. On behalf of all of the authors, the corresponding author states that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Lm., Zhang, Jl., Wang, Yz. et al. Magnesium-containing pellet regulating blast furnace ferrous burden interaction: softening–melting behavior and mechanism. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01223-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01223-4

Keywords

Navigation